Regulation of cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae

被引:336
作者
Mendenhall, MD
Hodge, AE
机构
[1] Univ Kentucky, Lucille P Markey Canc Ctr, Lexington, KY 40536 USA
[2] Univ Kentucky, Dept Biochem, Lexington, KY 40536 USA
[3] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06511 USA
关键词
D O I
10.1128/MMBR.62.4.1191-1243.1998
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The cyclin-dependent protein kinase (CDK) encoded by CDC28 is the master regulator of cell division in the budding yeast Saccharomyces cerevisiae. By mechanisms that, for the most part remain to be delineated Cdc28 activity controls the timing of mitotic commitment, bud initiation, DNA replication, spindle formation, and chromosome separation. Environmental stimuli and progress through the cell cycle are monitored through checkpoint mechanisms that influence Cdc28 activity at key cell cycle stages. A vast body of information concerning how Cdc28 activity is timed and coordinated with various mitotic events has accrued. This article reviews that literature. Following arl introduction to the properties of CDKs common to many eukaryotic species, the key influences on Cdc28 activity-cyclin-CKI binding and phosphorylation-dephosphorylation events-are examined. The processes controlling the abundance and activity of key Cdc28 regulators, especially transcriptional and proteolytic mechanisms, are then discussed in detail. Finally, the mechanisms by which environmental stimuli influence Cdc28 activity are summarized.
引用
收藏
页码:1191 / +
页数:54
相关论文
共 645 条
[1]  
Adams PD, 1996, MOL CELL BIOL, V16, P6623
[2]   Screening and identification of yeast sequences that cause growth inhibition when overexpressed [J].
Akada, R ;
Yamamoto, J ;
Yamashita, I .
MOLECULAR AND GENERAL GENETICS, 1997, 254 (03) :267-274
[3]   THE SAD1/RAD53 PROTEIN-KINASE CONTROLS MULTIPLE CHECKPOINTS AND DNA DAMAGE-INDUCED TRANSCRIPTION IN YEAST [J].
ALLEN, JB ;
ZHOU, Z ;
SIEDE, W ;
FRIEDBERG, EC ;
ELLEDGE, SJ .
GENES & DEVELOPMENT, 1994, 8 (20) :2401-2415
[4]  
ALTHOEFER H, 1995, MOL CELL BIOL, V15, P5917
[5]   Control of mitotic events by Nap1 and the Gin4 kinase [J].
Altman, R ;
Kellogg, D .
JOURNAL OF CELL BIOLOGY, 1997, 138 (01) :119-130
[6]   IDENTIFICATION, PURIFICATION, AND CLONING OF A POLYPEPTIDE (PRTF/GRM) THAT BINDS TO MATING-SPECIFIC PROMOTER ELEMENTS IN YEAST [J].
AMMERER, G .
GENES & DEVELOPMENT, 1990, 4 (02) :299-312
[7]   REGULATION OF P34CDC28 TYROSINE PHOSPHORYLATION IS NOT REQUIRED FOR ENTRY INTO MITOSIS IN SACCHAROMYCES-CEREVISIAE [J].
AMON, A ;
SURANA, U ;
MUROFF, I ;
NASMYTH, K .
NATURE, 1992, 355 (6358) :368-371
[8]   Regulation of B-type cyclin proteolysis by Cdc28-associated kinases in budding yeast [J].
Amon, A .
EMBO JOURNAL, 1997, 16 (10) :2693-2702
[9]   MECHANISMS THAT HELP THE YEAST-CELL CYCLE CLOCK TICK - G2 CYCLINS TRANSCRIPTIONALLY ACTIVATE G2 CYCLINS AND REPRESS G1 CYCLINS [J].
AMON, A ;
TYERS, M ;
FUTCHER, B ;
NASMYTH, K .
CELL, 1993, 74 (06) :993-1007
[10]   CLOSING THE CELL-CYCLE CIRCLE IN YEAST - G2 CYCLIN PROTEOLYSIS INITIATED AT MITOSIS PERSISTS UNTIL THE ACTIVATION OF G1 CYCLINS IN THE NEXT CYCLE [J].
AMON, A ;
IRNIGER, S ;
NASMYTH, K .
CELL, 1994, 77 (07) :1037-1050