Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials

被引:406
作者
Wang, Xianfeng [1 ,2 ,3 ]
Ding, Bin [1 ,2 ]
Yu, Jianyong [2 ]
Wang, Moran [4 ,5 ,6 ]
机构
[1] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
[2] Donghua Univ, Modern Text Inst, Nanomat Res Ctr, Shanghai 200051, Peoples R China
[3] Donghua Univ, Coll Text, Shanghai 201620, Peoples R China
[4] Tsinghua Univ, Sch Aerosp, Beijing 100084, Peoples R China
[5] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA
[6] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA
基金
中国国家自然科学基金;
关键词
Biomimetic; Superhydrophobic surfaces; Wettability; Electrospinning; Electrospun nanomaterials; Micro- and nanofibrous membranes; SUPER-WATER-REPELLENT; STRIDER LEGS; LOTUS-LEAF; NANOFIBERS; FABRICATION; FILMS; FIBERS; WETTABILITY; COMPOSITE; MEMBRANES;
D O I
10.1016/j.nantod.2011.08.004
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biomimetics provides a model for developments of functional surfaces with special wettability. Recently, manufacturing bio-inspired superhydrophobic surfaces has become an increasingly hot research topic. The electrospinning technique is a versatile and effective method for manufacturing nanomaterials with controllable compositions and structures, and therefore provides an ideal strategy for construction of superhydrophobic surfaces on a large scale. After a brief description of several superhydrophobic surfaces inspired by nature, we highlighted the recent progresses in design and fabrication of these bio-inspired superhydrophobic surfaces via electrospinning technique. The studies on the switchable wettability of nanofibrous surface brought about by external stimuli are also addressed. We conclude with a summary of current and future research efforts and opportunities in the development of electrospun nanomaterials for superhydrophobic applications. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:510 / 530
页数:21
相关论文
共 125 条
[1]   Tunable, superhydrophobically stable polymeric surfaces by electrospinning [J].
Acatay, K ;
Simsek, E ;
Ow-Yang, C ;
Menceloglu, YZ .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (39) :5210-5213
[2]   Electrospinning of fluorinated polymers: Formation of superhydrophobic surfaces [J].
Agarwal, Seema ;
Horst, Sven ;
Bognitzki, Michael .
MACROMOLECULAR MATERIALS AND ENGINEERING, 2006, 291 (06) :592-601
[3]   A New Class of Hierarchical Silver Nanostructures Enabled by Electrospinning and Novel Hydrothermal Treatment [J].
Barakat, Nasser A. M. ;
Khil, Myung Seob ;
Kim, Hak Yong .
SCIENCE OF ADVANCED MATERIALS, 2009, 1 (03) :230-235
[4]   Purity of the sacred lotus, or escape from contamination in biological surfaces [J].
Barthlott, W ;
Neinhuis, C .
PLANTA, 1997, 202 (01) :1-8
[5]   Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction [J].
Bhushan, Bharat ;
Jung, Yong Chae .
PROGRESS IN MATERIALS SCIENCE, 2011, 56 (01) :1-108
[6]   Wettability of porous surfaces. [J].
Cassie, ABD ;
Baxter, S .
TRANSACTIONS OF THE FARADAY SOCIETY, 1944, 40 :0546-0550
[7]   "Firecracker-shaped" ZnO/polyimide hybrid nanofibers via electrospinning and hydrothermal process [J].
Chang, Zhenjun .
CHEMICAL COMMUNICATIONS, 2011, 47 (15) :4427-4429
[8]   Nanowire-in-Microtube Structured Core/Shell Fibers via Multifluidic Coaxial Electrospinning [J].
Chen, Hongyan ;
Wang, Nu ;
Di, Jiancheng ;
Zhao, Yong ;
Song, Yanlin ;
Jiang, Lei .
LANGMUIR, 2010, 26 (13) :11291-11296
[9]   Light-Driven Wettability Changes on a Photoresponsive Electrospun Mat [J].
Chen, Menglin ;
Besenbacher, Flemming .
ACS NANO, 2011, 5 (02) :1549-1555
[10]   Thermo-Responsive Core-Sheath Electrospun Nanofibers from Poly (N-isopropylacrylamide)/Polycaprolactone Blends [J].
Chen, Menglin ;
Dong, Mingdong ;
Havelund, Rasmus ;
Regina, Viduthalai R. ;
Meyer, Rikke L. ;
Besenbacher, Flemming ;
Kingshottt, Peter .
CHEMISTRY OF MATERIALS, 2010, 22 (14) :4214-4221