A Schilder type theorem for super-Brownian motion

被引:13
作者
Fleischmann, K
Gartner, J
Kaj, I
机构
[1] TECH UNIV,DEPT MATH,D-10623 BERLIN,GERMANY
[2] DEPT MATH,S-75106 UPPSALA,SWEDEN
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 1996年 / 48卷 / 03期
关键词
Schilder's theorem; super-Brownian motion; superprocess; large deviations; rate functional; Cameron-Martin space; cumulant equation; complete blow-up;
D O I
10.4153/CJM-1996-028-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a d-dimensional continuous super-Brownian motion with branching rate epsilon, which might be described symbolically by the ''stochastic equation'' dX(t) = Delta*X(t)dt + root 2 epsilon X(t)dW(t) with dW(t)/dt a space-time white noise. A Schilder type theorem is established concerning large deviation probabilities of X on path space as epsilon --> 0, with a representation of the rate functional via an L(2)-functional on a generalized ''Cameron-Martin space'' of measure-valued paths.
引用
收藏
页码:542 / 568
页数:27
相关论文
共 19 条
[1]   COMPLETE BLOW-UP AFTER TMAX FOR THE SOLUTION OF A SEMILINEAR HEAT-EQUATION [J].
BARAS, P ;
COHEN, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 71 (01) :142-174
[2]   FINAL TIME BLOWUP PROFILES FOR SEMILINEAR PARABOLIC EQUATIONS VIA CENTER MANIFOLD THEORY [J].
BEBERNES, J ;
BRICHER, S .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (04) :852-869
[3]  
Dawson D. A., 1987, Stochastics, V20, P247, DOI 10.1080/17442508708833446
[4]  
DAWSON D. A., 1993, Lecture Notes in Math., V1541, P1, DOI [10.1007/BFb0084190, DOI 10.1007/BFB0084190]
[5]  
Dawson D.A., 1978, Canad. J. Statist., V6, P143, DOI DOI 10.2307/3315044
[6]  
Dawson D.A., 1975, J MULTIVARIATE ANAL, V5, P1, DOI [DOI 10.1016/0047-259X(75)90054-8, 10.1016/0047-259X(75)90054-8]
[7]  
Dembo A., 1993, Large deviations techniques and applications
[8]  
FENG S, 1995, IN PRESS ANN PROBAB
[9]  
FLEISCHMANN K, 1994, ANN I H POINCARE-PR, V30, P607
[10]  
FLEISCHMANN K, 1993, SCHILDER TYPE THEORE