Bilayer heterojunction polymer solar cells using unsubstituted polythiophene via oxidative chemical vapor deposition

被引:51
作者
Borrelli, David C. [1 ]
Barr, Miles C. [1 ]
Bulovic, Vladimir [2 ]
Gleason, Karen K. [1 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Unsubstituted polythiophene; Polymer solar cells; Bilayer heterojunction; Vapor deposition; Vacuum deposition; BAND-GAP POLYMERS; FILMS; POLY(3,4-ETHYLENEDIOXYTHIOPHENE); CONDUCTIVITY; ION;
D O I
10.1016/j.solmat.2011.11.040
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We demonstrate the use of a vacuum-based, vapor phase technique for the deposition of a donor polymer for use in polymer solar cells. Unsubstituted polythiophene (PT), which is insoluble and infusible and thus typically difficult to process, is easily prepared by oxidative chemical vapor deposition (oCVD). The oCVD process results in a conductive PT film that is heavily doped with FeCl3, which is used as the oxidizing agent. A post-deposition methanol rinse sufficiently dedopes the film and removes spent oxidant, leaving semiconducting PT with an optical bandgap close to 2 eV. Drastic changes in the film color, absorption spectra, and film composition confirm the dedoping process. The resulting semiconducting PT is then applied as an electron donor in bilayer heterojunction solar cells with a thermally evaporated C-60 electron acceptor layer, resulting in power conversion efficiencies up to 0.8%. The absorption edge of the PT at similar to 620 nm closely matches the edge present in the external quantum efficiency spectra, indicating that the oCVD PT contributes to the photocurrent of the devices. This demonstrates that the oCVD technique can be used in the processing and design of polymer active layers for polymer solar cells and hybrid small molecular organic solar cells without solubility, temperature, or substrate considerations. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:190 / 196
页数:7
相关论文
共 49 条
[1]  
[Anonymous], 2011, SCIFINDER SCHOLAR CH
[2]  
[Anonymous], 2010, KNOWLTALL VERS 8 3
[3]   Direct Monolithic Integration of Organic Photovoltaic Circuits on Unmodified Paper [J].
Barr, Miles C. ;
Rowehl, Jill A. ;
Lunt, Richard R. ;
Xu, Jingjing ;
Wang, Annie ;
Boyce, Christopher M. ;
Im, Sung Gap ;
Bulovic, Vladimir ;
Gleason, Karen K. .
ADVANCED MATERIALS, 2011, 23 (31) :3500-+
[4]   Initiated and oxidative chemical vapor deposition: a scalable method for conformal and functional polymer films on real substrates [J].
Baxamusa, Salmaan H. ;
Im, Sung Gap ;
Gleason, Karen K. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (26) :5227-5240
[5]   Enhanced properties in chemically polymerized poly(terthiophene) using vapour phase techniques [J].
Bayley, P. M. ;
Winther-Jensen, B. ;
MacFarlane, D. R. ;
Rocher, N. M. ;
Forsyth, M. .
REACTIVE & FUNCTIONAL POLYMERS, 2008, 68 (07) :1119-1126
[6]   PHOTOVOLTAIC PROPERTIES OF THIN-FILMS OF PLASMA-POLYMERIZED ACRYLONITRILE [J].
BHUIYAN, AH ;
BHORASKAR, SV .
THIN SOLID FILMS, 1988, 162 (1-2) :333-342
[7]   EQCM STUDIES OF FILM GROWTH, REDOX CYCLING, AND CHARGE TRAPPING OF NORMAL-DOPED AND PARA-DOPED POLY(THIOPHENE) [J].
BORJAS, R ;
BUTTRY, DA .
CHEMISTRY OF MATERIALS, 1991, 3 (05) :872-878
[8]   Polymer-Fullerene Bulk-Heterojunction Solar Cells [J].
Brabec, Christoph J. ;
Gowrisanker, Srinivas ;
Halls, Jonathan J. M. ;
Laird, Darin ;
Jia, Shijun ;
Williams, Shawn P. .
ADVANCED MATERIALS, 2010, 22 (34) :3839-3856
[9]   Low band gap polymers for organic photovoltaics [J].
Bundgaard, Eva ;
Krebs, Frederik C. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (11) :954-985
[10]   Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications [J].
Cardona, Claudia M. ;
Li, Wei ;
Kaifer, Angel E. ;
Stockdale, David ;
Bazan, Guillermo C. .
ADVANCED MATERIALS, 2011, 23 (20) :2367-2371