Mosaic Analysis with Double Markers Reveals Tumor Cell of Origin in Glioma

被引:522
作者
Liu, Chong [1 ]
Sage, Jonathan C. [1 ]
Miller, Michael R. [1 ]
Verhaak, Roel G. W. [2 ]
Hippenmeyer, Simon [3 ,4 ]
Vogel, Hannes [5 ]
Foreman, Oded [6 ]
Bronson, Roderick T. [7 ]
Nishiyama, Akiko [8 ]
Luo, Liqun [3 ,4 ]
Zong, Hui [1 ]
机构
[1] Univ Oregon, Inst Mol Biol, Eugene, OR 97403 USA
[2] Univ Texas MD Anderson Canc Ctr, Dept Bioinformat & Computat Biol, Houston, TX 77030 USA
[3] Stanford Univ, HHMI, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Biol, Stanford, CA 94305 USA
[5] Stanford Univ, Sch Med, Dept Neuropathol, Stanford, CA 94305 USA
[6] Jackson Lab, Sacramento, CA 95838 USA
[7] Tufts Cummings Sch Vet Med, Dept Biomed Sci, North Grafton, MA 01536 USA
[8] Univ Connecticut, Dept Physiol & Neurobiol, Storrs, CT 06269 USA
基金
瑞士国家科学基金会;
关键词
NEURAL STEM-CELLS; INTEGRATED GENOMIC ANALYSIS; PROGENITOR CELLS; WHITE-MATTER; NG2; CELLS; GROWTH; GLIOBLASTOMA; DROSOPHILA; OLIGODENDROCYTES; DIFFERENTIATION;
D O I
10.1016/j.cell.2011.06.014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cancer cell of origin is difficult to identify by analyzing cells within terminal stage tumors, whose identity could be concealed by the acquired plasticity. Thus, an ideal approach to identify the cell of origin is to analyze proliferative abnormalities in distinct lineages prior to malignancy. Here, we use mosaic analysis with double markers (MADM) in mice to model gliomagenesis by initiating concurrent p53/Nf1 mutations sporadically in neural stem cells (NSCs). Surprisingly, MADM-based lineage tracing revealed significant aberrant growth prior to malignancy only in oligodendrocyte precursor cells (OPCs), but not in any other NSC-derived lineages or NSCs themselves. Upon tumor formation, phenotypic and transcriptome analyses of tumor cells revealed salient OPC features. Finally, introducing the same p53/Nf1 mutations directly into OPCs consistently led to gliomagenesis. Our findings suggest OPCs as the cell of origin in this model, even when initial mutations occur in NSCs, and highlight the importance of analyzing premalignant stages to identify the cancer cell of origin.
引用
收藏
页码:209 / 221
页数:13
相关论文
共 38 条
[1]   Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses [J].
Assanah, Marcela ;
Lochhead, Richard ;
Ogden, Alfred ;
Bruce, Jeffrey ;
Goldman, James ;
Canoll, Peter .
JOURNAL OF NEUROSCIENCE, 2006, 26 (25) :6781-6790
[2]   Epidermal growth factor receptor and Ink4a/Arf:: Convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis [J].
Bachoo, RM ;
Maher, EA ;
Ligon, KL ;
Sharpless, NE ;
Chan, SS ;
You, MJJ ;
Tang, Y ;
DeFrances, J ;
Stover, E ;
Weissleder, R ;
Rowitch, DH ;
Louis, DN ;
DePinho, RA .
CANCER CELL, 2002, 1 (03) :269-277
[3]   Aberrant growth and differentiation of oligodendrocyte progenitors in neurofibromatosis type 1 mutants [J].
Bennett, MR ;
Rizvi, TA ;
Karyala, S ;
McKinnon, RD ;
Ratner, N .
JOURNAL OF NEUROSCIENCE, 2003, 23 (18) :7207-7217
[4]   A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function [J].
Cahoy, John D. ;
Emery, Ben ;
Kaushal, Amit ;
Foo, Lynette C. ;
Zamanian, Jennifer L. ;
Christopherson, Karen S. ;
Xing, Yi ;
Lubischer, Jane L. ;
Krieg, Paul A. ;
Krupenko, Sergey A. ;
Thompson, Wesley J. ;
Barres, Ben A. .
JOURNAL OF NEUROSCIENCE, 2008, 28 (01) :264-278
[5]   Comprehensive genomic characterization defines human glioblastoma genes and core pathways [J].
Chin, L. ;
Meyerson, M. ;
Aldape, K. ;
Bigner, D. ;
Mikkelsen, T. ;
VandenBerg, S. ;
Kahn, A. ;
Penny, R. ;
Ferguson, M. L. ;
Gerhard, D. S. ;
Getz, G. ;
Brennan, C. ;
Taylor, B. S. ;
Winckler, W. ;
Park, P. ;
Ladanyi, M. ;
Hoadley, K. A. ;
Verhaak, R. G. W. ;
Hayes, D. N. ;
Spellman, Paul T. ;
Absher, D. ;
Weir, B. A. ;
Ding, L. ;
Wheeler, D. ;
Lawrence, M. S. ;
Cibulskis, K. ;
Mardis, E. ;
Zhang, Jinghui ;
Wilson, R. K. ;
Donehower, L. ;
Wheeler, D. A. ;
Purdom, E. ;
Wallis, J. ;
Laird, P. W. ;
Herman, J. G. ;
Schuebel, K. E. ;
Weisenberger, D. J. ;
Baylin, S. B. ;
Schultz, N. ;
Yao, Jun ;
Wiedemeyer, R. ;
Weinstein, J. ;
Sander, C. ;
Gibbs, R. A. ;
Gray, J. ;
Kucherlapati, R. ;
Lander, E. S. ;
Myers, R. M. ;
Perou, C. M. ;
McLendon, Roger .
NATURE, 2008, 455 (7216) :1061-1068
[6]   Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse [J].
Collier, LS ;
Carlson, CM ;
Ravimohan, S ;
Dupuy, AJ ;
Largaespada, DA .
NATURE, 2005, 436 (7048) :272-276
[7]   NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS [J].
Dawson, MRL ;
Polito, A ;
Levine, JM ;
Reynolds, R .
MOLECULAR AND CELLULAR NEUROSCIENCE, 2003, 24 (02) :476-488
[8]   Efficient transposition of the piggyBac resource (PB) transposon in mammalian cells and mice [J].
Ding, S ;
Wu, XH ;
Li, G ;
Han, M ;
Zhuang, Y ;
Xu, T .
CELL, 2005, 122 (03) :473-483
[9]   Subventricular zone astrocytes are neural stem cells in the adult mammalian brain [J].
Doetsch, F ;
Caillé, I ;
Lim, DA ;
García-Verdugo, JM ;
Alvarez-Buylla, A .
CELL, 1999, 97 (06) :703-716
[10]   NG2+/Olig2+Cells are the Major Cycle-Related Cell Population of the Adult Human Normal Brain [J].
Geha, Sameh ;
Pallud, Johan ;
Junier, Marie-Pierre ;
Devaux, Bertrand ;
Leonard, Nadine ;
Chassoux, Francine ;
Chneiweiss, Herve ;
Daumas-Duport, Catherine ;
Varlet, Pascale .
BRAIN PATHOLOGY, 2010, 20 (02) :399-411