Direct imaging of DNA in living cells reveals the dynamics of chromosome formation

被引:144
作者
Manders, EMM [1 ]
Kimura, H [1 ]
Cook, PR [1 ]
机构
[1] Univ Oxford, Sir William Dunn Sch Pathol, Oxford OX1 3RE, England
基金
英国惠康基金;
关键词
cell cycle; chromosome; DNA replication; fluorescein; microscopy;
D O I
10.1083/jcb.144.5.813
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Individual chromosomes are not directly visible within the interphase nuclei of most somatic cells; they can only be seen during mitosis. We have developed a method that allows DNA strands to be observed directly in living cells, and we use it to analyze how mitotic chromosomes form. A fluorescent analogue (e.g., Cy5-dUTP) of the natural precursor, thymidine triphosphate, is introduced into cells, which are then grown on the heated stage of a confocal microscope. The analogue is incorporated by the endogenous enzymes into DNA. As the mechanisms for recognizing and removing the unusual residues do not prevent subsequent progress around the cell cycle, the now fluorescent DNA strands can be followed as they assemble into chromosomes, and segregate to daughters and granddaughters. Movies of such strands in living cells suggest that chromosome axes follow simple recognizable paths through their territories during G2 phase, and that late replicating regions maintain their relative positions as prophase chromosomes form. Quantitative analysis confirms that individual regions move little during this stage of chromosome condensation. As a result, the gross structure of an interphase chromosome territory is directly related to that of the prophase chromosome.
引用
收藏
页码:813 / 821
页数:9
相关论文
共 43 条
[1]   Chromatin dynamics in interphase nuclei and its implications for nuclear structure [J].
Abney, JR ;
Cutler, B ;
Fillbach, ML ;
Axelrod, D ;
Scalettar, BA .
JOURNAL OF CELL BIOLOGY, 1997, 137 (07) :1459-1468
[2]   Analysis of efficiency of two-photon versus single-photon absorption for fluorescence generation in biological objects [J].
Brakenhoff, GJ ;
Muller, M ;
Ghauharali, RI .
JOURNAL OF MICROSCOPY-OXFORD, 1996, 183 :140-144
[3]   GREEN FLUORESCENT PROTEIN AS A MARKER FOR GENE-EXPRESSION [J].
CHALFIE, M ;
TU, Y ;
EUSKIRCHEN, G ;
WARD, WW ;
PRASHER, DC .
SCIENCE, 1994, 263 (5148) :802-805
[4]  
COOK PR, 1995, J CELL SCI, V108, P2927
[5]   ROLE OF CHROMOSOME TERRITORIES IN THE FUNCTIONAL COMPARTMENTALIZATION OF THE CELL-NUCLEUS [J].
CREMER, T ;
KURZ, A ;
ZIRBEL, R ;
DIETZEL, S ;
RINKE, B ;
SCHROCK, E ;
SPEICHER, MR ;
MATHIEU, U ;
JAUCH, A ;
EMMERICH, P ;
SCHERTHAN, H ;
RIED, T ;
CREMER, C ;
LICHTER, P .
COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 1993, 58 :777-792
[6]   2-PHOTON LASER SCANNING FLUORESCENCE MICROSCOPY [J].
DENK, W ;
STRICKLER, JH ;
WEBB, WW .
SCIENCE, 1990, 248 (4951) :73-76
[7]   WAVELENGTH DEPENDENCE OF LASER-INDUCED DNA-DAMAGE IN LYMPHOCYTES OBSERVED BY SINGLE-CELL GEL-ELECTROPHORESIS [J].
DEWITH, A ;
GREULICH, KO .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 1995, 30 (01) :71-76
[8]   Cell cycle checkpoints: Preventing an identity crisis [J].
Elledge, SJ .
SCIENCE, 1996, 274 (5293) :1664-1672
[9]  
Friedberg E.F., 1985, DNA Repair
[10]   Specific covalent labeling of recombinant protein molecules inside live cells [J].
Griffin, BA ;
Adams, SR ;
Tsien, RY .
SCIENCE, 1998, 281 (5374) :269-272