Genomic scans for selective sweeps using SNP data

被引:705
作者
Nielsen, R [1 ]
Williamson, S
Kim, Y
Hubisz, MJ
Clark, AG
Bustamante, C
机构
[1] Cornell Univ, Dept Biol Stat & Computat Biol, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA
[3] Univ Copenhagen, Ctr Bioinformat, DK-1168 Copenhagen, Denmark
[4] Univ Copenhagen, Dept Biol, DK-1168 Copenhagen, Denmark
[5] Univ Rochester, Dept Biol, Rochester, NY 14627 USA
关键词
D O I
10.1101/gr.4252305
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Detecting selective sweeps from genomic SNP data is complicated by the intricate ascertainment schemes used to discover SNPs, and by the confounding influence of the underlying complex demographics and varying Mutation and recombination rates. Current methods for detecting selective sweeps have little or no robustness to the demographic assumptions and varying recombination rates, and provide no method for correcting for ascertainment biases. Here, we present several new tests aimed at detecting selective sweeps from genomic SNP data. Using extensive simulations, we show that a new parametric test, based on composite likelihood, has a high power to detect selective sweeps and is Surprisingly robust to assumptions regarding recombination rates and demography (i.e., has low Type I error). Our new test also provides estimates of the location of the selective sweep(s) and the magnitude of the selection coefficient. To illustrate the method, we apply our approach to data from the Seattle SNP project and to Chromosome 2 data from the HapMap project. In Chromosome 2, the most extreme signal is found in the lactase gene, which previously has been shown to be undergoing positive selection. Evidence for selective sweeps is also found in many other regions, including genes known to be associated with disease risk such as DPP10 and COL4A3.
引用
收藏
页码:1566 / 1575
页数:10
相关论文
共 35 条
[1]  
Akashi H, 1999, GENETICS, V151, P221
[2]   Interrogating a high-density SNP map for signatures of natural selection [J].
Akey, JM ;
Zhang, G ;
Zhang, K ;
Jin, L ;
Shriver, MD .
GENOME RESEARCH, 2002, 12 (12) :1805-1814
[3]   The effect of hitch-hiking on neutral genealogies [J].
Barton, NH .
GENETICS RESEARCH, 1998, 72 (02) :123-133
[4]   The effect of selection on genealogies [J].
Barton, NH ;
Etheridge, AM .
GENETICS, 2004, 166 (02) :1115-1131
[5]   Genetic signatures of strong recent positive selection at the lactase gene [J].
Bersaglieri, T ;
Sabeti, PC ;
Patterson, N ;
Vanderploeg, T ;
Schaffner, SF ;
Drake, JA ;
Rhodes, M ;
Reich, DE ;
Hirschhorn, JN .
AMERICAN JOURNAL OF HUMAN GENETICS, 2004, 74 (06) :1111-1120
[6]  
CAVALLISFORZA LL, 1973, AM J HUM GENET, V25, P82
[7]   Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios [J].
Clark, AG ;
Glanowski, S ;
Nielsen, R ;
Thomas, PD ;
Kejariwal, A ;
Todd, MA ;
Tanenbaum, DM ;
Civello, D ;
Lu, F ;
Murphy, B ;
Ferriera, S ;
Wang, G ;
Zheng, XG ;
White, TJ ;
Sninsky, JJ ;
Adams, MD ;
Cargill, M .
SCIENCE, 2003, 302 (5652) :1960-1963
[8]   Approximating selective sweeps [J].
Durrett, R ;
Schweinsberg, J .
THEORETICAL POPULATION BIOLOGY, 2004, 66 (02) :129-138
[9]  
Fay JC, 2000, GENETICS, V155, P1405
[10]   The International HapMap Project [J].
Gibbs, RA ;
Belmont, JW ;
Hardenbol, P ;
Willis, TD ;
Yu, FL ;
Yang, HM ;
Ch'ang, LY ;
Huang, W ;
Liu, B ;
Shen, Y ;
Tam, PKH ;
Tsui, LC ;
Waye, MMY ;
Wong, JTF ;
Zeng, CQ ;
Zhang, QR ;
Chee, MS ;
Galver, LM ;
Kruglyak, S ;
Murray, SS ;
Oliphant, AR ;
Montpetit, A ;
Hudson, TJ ;
Chagnon, F ;
Ferretti, V ;
Leboeuf, M ;
Phillips, MS ;
Verner, A ;
Kwok, PY ;
Duan, SH ;
Lind, DL ;
Miller, RD ;
Rice, JP ;
Saccone, NL ;
Taillon-Miller, P ;
Xiao, M ;
Nakamura, Y ;
Sekine, A ;
Sorimachi, K ;
Tanaka, T ;
Tanaka, Y ;
Tsunoda, T ;
Yoshino, E ;
Bentley, DR ;
Deloukas, P ;
Hunt, S ;
Powell, D ;
Altshuler, D ;
Gabriel, SB ;
Qiu, RZ .
NATURE, 2003, 426 (6968) :789-796