Production of a desulfurization biocatalyst by two-stage fermentation and its application for the treatment of model and diesel oils

被引:42
作者
Chang, JH
Kim, YJ
Lee, BH
Cho, KS
Ryu, HW
Chang, YK
Chang, HN
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem Engn, Taejon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, Bioproc Engn Res Ctr, Taejon 305701, South Korea
[3] Ewha Womans Univ, Dept Environm Sci & Engn, Seoul 125750, South Korea
[4] Soongsil Univ, Dept Environm Chem & Engn, Seoul 156743, South Korea
关键词
D O I
10.1021/bp0100676
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
For the production of oil-desulfurizing biocatalyst, a two-stage fermentation strategy was adopted, in which the cell growth stage and desulfurization activity induction stage were separated. Sucrose was found to be the optimal carbon source for the growth of Gordonia nitida CYKS1. Magnesium sulfate was selected to be the sulfur source in the cell growth stage. The optimal ranges of sucrose and magnesium sulfate were 10-50 and 1-2.5 g L-1, respectively. Such a broad optimal concentration of sucrose made the fed-batch culture easy, while the sucrose concentration was maintained between 10-20 g L-1 in the actual operation. As a result, 92.6 g L-1 of cell mass was acquired by 120 h of fed-batch culture. This cell mass was over three times higher than a previously reported result, though the strain used was different. The desulfurization activity of the harvested cells from the first stage culture was induced by batch cultivation with dibenzothiophene as the sole sulfur source. The optimal induction time was found to be about 4 h. The resting-cell biocatalyst made from the induced cells was applied for the deep desulfurization of a diesel oil. It was observed that the sulfur content of the diesel oil decreased from 250 mg-sulfur L-oil(-1) to as low as 61 mg-sulfur L-oil(-1) in 20 h. It implied that the biocatalyst developed in this study had a good potential to be applied to a deep desulfurization process to produce ultralow-sulfur fuel oils.
引用
收藏
页码:876 / 880
页数:5
相关论文
共 19 条
[1]   Desulfurization of diesel oils by a newly isolated dibenzothiophene-degrading Nocardia sp. strain CYKS2 [J].
Chang, JH ;
Rhee, SK ;
Chang, YK ;
Chang, HN .
BIOTECHNOLOGY PROGRESS, 1998, 14 (06) :851-855
[2]   Conservation of plasmid-encoded dibenzothiophene desulfurization genes in several rhodococci [J].
DenisLarose, C ;
Labbe, D ;
Bergeron, H ;
Jones, AM ;
Greer, CW ;
AlHawari, J ;
Grossman, MJ ;
Sankey, BM ;
Lau, PCK .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997, 63 (07) :2915-2919
[3]   CHARACTERIZATION OF THE DESULFURIZATION GENES FROM RHODOCOCCUS SP STRAIN IGTS8 [J].
DENOME, SA ;
OLDFIELD, C ;
NASH, LJ ;
YOUNG, KD .
JOURNAL OF BACTERIOLOGY, 1994, 176 (21) :6707-6716
[4]  
GALLAGHER JR, 1993, FEMS MICROBIOL LETT, V107, P31, DOI 10.1111/j.1574-6968.1993.tb05999.x
[5]   Designing recombinant Pseudomonas strains to enhance biodesulfurization [J].
Gallardo, ME ;
Ferrandez, A ;
DeLorenzo, V ;
Garcia, JL ;
Diaz, E .
JOURNAL OF BACTERIOLOGY, 1997, 179 (22) :7156-7160
[6]   Molecular mechanisms of biocatalytic desulfurization of fossil fuels [J].
Gray, KA ;
Pogrebinsky, OS ;
Mrachko, GT ;
Xi, L ;
Monticello, DJ ;
Squires, CH .
NATURE BIOTECHNOLOGY, 1996, 14 (13) :1705-1709
[7]   High cell density culture of Rhodococcus rhodochrous by pH-stat feeding and dibenzothiophene degradation [J].
Honda, H ;
Sugiyama, H ;
Saito, I ;
Kobayashi, T .
JOURNAL OF FERMENTATION AND BIOENGINEERING, 1998, 85 (03) :334-338
[8]   SELECTIVE DESULFURIZATION OF DIBENZOTHIOPHENE BY RHODOCOCCUS-ERYTHROPOLIS D-1 [J].
IZUMI, Y ;
OHSHIRO, T ;
OGINO, H ;
HINE, Y ;
SHIMAO, M .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1994, 60 (01) :223-226
[9]   Thermophilic carbon-sulfur-bond-targeted biodesulfurization [J].
Konishi, J ;
Ishii, Y ;
Onaka, T ;
Okumura, K ;
Suzuki, M .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997, 63 (08) :3164-3169
[10]   Bacterial transformations of 1,2,3,4-tetrahydrodibenzothiophene and dibenzothiophene [J].
Kropp, KG ;
Andersson, JT ;
Fedorak, PM .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997, 63 (08) :3032-3042