On weighted Hardy and Poincare-type inequalities for differences

被引:13
作者
Burenkov, VI
Evans, WD
Goldman, ML
机构
[1] Univ Wales Coll Cardiff, Sch Math, Cardiff CF2 4AG, S Glam, Wales
[2] Tech Univ, Moscow State Inst Radio Engn Elect & Automat, Moscow, Russia
关键词
Hardy; Poincare; inequalities; differences;
D O I
10.1155/S1025583497000015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A criterion is obtained for the Hardy-type inequality (integral(0)(a)\f(x)\(P)v(x)dx)(1/p) less than or equal to c(1){(v(a)integral(0)(a)\f(x)\(P)dx)(1/p) +(integral(0)(a) integral(0)(a)\f(x)-f(y)\(P)w(\x-y\)dxdy)(1/p)} to be valid for 0 < a less than or equal to A less than or equal to infinity and 0 < p < infinity. This weakens a criterion previously found by the first two authors and comes close to being necessary as well as sufficient. when an inequality in the criterion is reversed, a Poincare-type inequality is derived in some cases.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 9 条
[1]  
Bary NK., 1956, T MOSK MAT OBSHCH, V5, P483
[2]  
BURENKOV VI, UNPUB NECESSARY SUFF
[3]  
BURENKOV VI, IN PRESS J LONDON MA
[4]  
Grisvard P., 1969, ANN SCUOLA NORM SUP, V23, P373
[5]  
KUFNER A., 1978, C SEM MAT U BARI, V156, P1
[6]  
KUFNER A, 1993, 17 LUL U TECHN DEP M, P1
[7]  
Triebel H., 1978, Interpolation theory, function spaces, differential operators
[8]  
YAKOVLEV GN, 1967, MAT SBORNIK, V74, P526
[9]  
YAKOVLEV GN, 1961, T MAT I, V60, P325