Two distinct components of release factor function uncovered by nucleophile partitioning analysis

被引:73
作者
Shaw, Jeffrey J.
Green, Rachel [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Howard Hughes Med Inst, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Sch Med, Dept Mol Biol & Genet, Baltimore, MD 21205 USA
关键词
D O I
10.1016/j.molcel.2007.09.007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
During translation termination, release factor (RF) protein catalyzes a hydrolytic reaction in the large subunit peptidyl transferase center to release the finished polypeptide chain. While the mechanism of catalysis of peptide release remains obscure, important contributing factors have been identified, including conserved active-site nucleotides and a GGQ tripeptide motif in the RF. Here we describe pre-steady-state kinetic and nucleophile competition experiments to examine RF contributions to the rate and specificity of peptide release. We find that while unacylated tRNA stimulates release in a nondiscriminating manner, RF1 is very specific for water. Further analysis reveals that amino acid Q235 of the RF1 GGQ motif is critical for the observed specificity. These data lead to a model where RFs make two distinct contributions to catalysis-a relatively nonspecific activation of the catalytic center and specific selection of water as a nucleophile facilitated by Q235.
引用
收藏
页码:458 / 467
页数:10
相关论文
共 38 条
[1]   Importance of tRNA interactions with 23S rRNA for peptide bond formation on the ribosome: studies with substrate analogs [J].
Beringer, Malte ;
Rodnina, Marina V. .
BIOLOGICAL CHEMISTRY, 2007, 388 (07) :687-691
[2]   The ribosomal peptidyl transferase [J].
Beringer, Malte ;
Rodnina, Marina V. .
MOLECULAR CELL, 2007, 26 (03) :311-321
[3]   The interaction between C75 of tRNA and the A loop of the ribosome stimulates peptidyl transferase activity [J].
Brunelle, JL ;
Youngman, EM ;
Sharma, D ;
Green, R .
RNA, 2006, 12 (01) :33-39
[4]   HYDROLYSIS OF FMET TRANSFER RNA BY PEPTIDYL TRANSFERASE [J].
CASKEY, CT ;
BEAUDET, AL ;
SCOLNICK, EM ;
ROSMAN, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1971, 68 (12) :3163-&
[5]   A possible mechanism of peptide bond formation on ribosome without mediation of peptidyl transferase [J].
Das, GK ;
Bhattacharyya, D ;
Burma, DP .
JOURNAL OF THEORETICAL BIOLOGY, 1999, 200 (02) :193-205
[6]   A post-translational modification in the GGQ motif of RF2 from Escherichia coli stimulates termination of translation [J].
Dinçbas-Renqvist, V ;
Engström, Å ;
Mora, L ;
Heurgué-Hamard, V ;
Buckingham, R ;
Ehrenberg, M .
EMBO JOURNAL, 2000, 19 (24) :6900-6907
[7]   Mononucleotide derivatives as ribosomal P-site substrates reveal an important contribution of the 2′-OH to activity [J].
Dorner, S ;
Panuschka, C ;
Schmid, W ;
Barta, A .
NUCLEIC ACIDS RESEARCH, 2003, 31 (22) :6536-6542
[8]   FACTORS DETERMINING NUCLEOPHILIC REACTIVITIES [J].
EDWARDS, JO ;
PEARSON, RG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1962, 84 (01) :16-&
[9]   Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis [J].
Frolova, LY ;
Tsivkovskii, RY ;
Sivolobova, GF ;
Oparina, NY ;
Serpinsky, OI ;
Blinov, VM ;
Tatkov, SI ;
Kisselev, LL .
RNA, 1999, 5 (08) :1014-1020
[10]   The glutamine residue of the conserved GGQ motif in Saccharomyces cerevisiae release factor eRF1 is methylated by the product of the YDR140w gene [J].
Heurgué-Hamard, V ;
Champ, S ;
Mora, L ;
Merkoulova-Rainon, T ;
Kisselev, LL ;
Buckingham, RH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (04) :2439-2445