15-mer DNA duplexes containing an abasic site are thermodynamically more stable with adjacent purines than with pyrimidines

被引:27
作者
Sági, J [1 ]
Guliaev, AB [1 ]
Singer, B [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Donner Lab, Berkeley, CA 94720 USA
关键词
D O I
10.1021/bi0024409
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Abasic site (AP)-containing duplexes, with flanking adenine (A) or cytosine (C) bases, were shown to be more stable with flanking A than with C bases [Sagi, J., Hang, B., and Singer, B. (1999) Chem. Res. Toxicol. 12, 917-923]. We investigated whether the lower-magnitude destabilization by an AP site, with A neighbors, is a general effect of the purine versus the pyrimidine neighbors. Duplex stability, as compared to that of the corresponding control duplexes, was markedly decreased by the incorporation of the AP site (x) opposite any of the four bases. However, for the duplexes containing T, A, or C opposite the AP site, replacement of the symmetric doublet flanking pyrimidine bases with purines resulted in a smaller destabilization effect. The average stabilizing effect of the symmetric doublet purine neighbors of an AP site opposite T, A, or C bases was 3.2 degreesC (DeltaT(m)) and 1.3 kcal/mol (Delta DeltaG degrees (37)) compared to those of pyrimidine neighbors. In contrast, a G.AP pair reduced or eliminated the differential effect of the neighbors. Using unrestrained molecular dynamics, it was shown that for the duplexes containing T opposite the AP site, with doublet pyrimidine neighbors, there was a larger magnitude of curvature around the lesion site than for the duplexes with the purines flanking the AP site. Purines flanking the AP site tend to shift toward each other, creating overlap, in contrast to the flanking pyrimidines. This indicates the possibility of stacking between purine bases at the AP site and can be the reason for the observed smaller thermodynamic destabilization of the duplexes with the AAxAA and GGxGG central sequences, as compared to those with TTxTT and CCxCC sequences. This work showed that for an AP site the GC content is not the only determinant of duplex stability, but rather is influenced more by whether purines or pyrimidines flank the AP site.
引用
收藏
页码:3859 / 3868
页数:10
相关论文
共 40 条
[1]   Abasic sites in duplex DNA: Molecular modeling of sequence-dependent effects on conformation [J].
Ayadi, L ;
Coulombeau, C ;
Lavery, R .
BIOPHYSICAL JOURNAL, 1999, 77 (06) :3218-3226
[2]   The impact of abasic sites on DNA flexibility [J].
Ayadi, L ;
Coulombeau, C ;
Lavery, R .
JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2000, 17 (04) :645-653
[3]   New insights into the structure of abasic DNA from molecular dynamics simulations [J].
Barsky, D ;
Foloppe, N ;
Ahmadia, S ;
Wilson, DM ;
MacKerell, AD .
NUCLEIC ACIDS RESEARCH, 2000, 28 (13) :2613-2626
[4]   SITE-DIRECTED MUTAGENESIS OF THE HUMAN DNA-REPAIR ENZYME HAP1 - IDENTIFICATION OF RESIDUES IMPORTANT FOR AP ENDONUCLEASE AND RNASE-H ACTIVITY [J].
BARZILAY, G ;
WALKER, LJ ;
ROBSON, CN ;
HICKSON, ID .
NUCLEIC ACIDS RESEARCH, 1995, 23 (09) :1544-1550
[5]   Structures of apurinic and apyrimidinic sites in duplex DNAs [J].
Beger, RD ;
Bolton, PH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (25) :15565-15573
[6]  
CASE DA, 1997, AMBER 5 0
[7]   Solution conformation of an abasic DNA undecamer duplex d(CGCACXCACGC)-d(GCGTGTGTGCG): The unpaired thymine stacks inside the helix [J].
Coppel, Y ;
Berthet, N ;
Coulombeau, C ;
Coulombeau, C ;
Garcia, J ;
Lhomme, J .
BIOCHEMISTRY, 1997, 36 (16) :4817-4830
[8]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[9]   ABASIC FRAMESHIFT IN DNA - SOLUTION CONFORMATION DETERMINED BY PROTON NMR AND MOLECULAR MECHANICS CALCULATIONS [J].
CUNIASSE, P ;
SOWERS, LC ;
ERITJA, R ;
KAPLAN, B ;
GOODMAN, MF ;
COGNET, JAH ;
LEBRET, M ;
GUSCHLBAUER, W ;
FAZAKERLEY, GV .
BIOCHEMISTRY, 1989, 28 (05) :2018-2026
[10]   THE ABASIC SITE AS A CHALLENGE TO DNA-POLYMERASE - A NUCLEAR-MAGNETIC-RESONANCE STUDY OF G, C AND T OPPOSITE A MODEL ABASIC SITE [J].
CUNIASSE, P ;
FAZAKERLEY, GV ;
GUSCHLBAUER, W ;
KAPLAN, BE ;
SOWERS, LC .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 213 (02) :303-314