Total variation improved wavelet thresholding in image compression

被引:40
作者
Chan, TF [1 ]
Zhou, HM [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
来源
2000 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS | 2000年
关键词
D O I
10.1109/ICIP.2000.899404
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose using Partial Differential Equation (PDE) techniques in wavelet based image processing to reduce edge artifacts generated by wavelet thresholding. We employ minimization techniques, in particular the minimization of total variation (TV), to modify the retained standard wavelet coefficients so that the reconstructed images have less oscillations near edges. Numerical experiments show that this approach improves the reconstructed image quality in wavelet compression and in denoising.
引用
收藏
页码:391 / 394
页数:4
相关论文
共 13 条
[1]  
Candes E. J., 1999, CURVELETS SUPRISINGL
[2]   Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage [J].
Chambolle, A ;
DeVore, RA ;
Lee, NY ;
Lucier, BJ .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (03) :319-335
[3]   Feature preserving lossy image compression using nonlinear PDE's [J].
Chan, TF ;
Zhou, HM .
ADVANCED SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, AND IMPLEMENTATIONS VIII, 1998, 3461 :316-327
[4]  
CHAN TF, 1996, LECT NOTES CONTROL I, V219, P241, DOI DOI 10.1007/3-540-76076-8
[5]  
CHAN TF, 1996, 9644 CAM UCL DEP MAT
[6]  
CHAN TF, 1999, UNPUB SIAM NUMER ANA
[7]  
CLAYPOOLE P, 1999, UNPUB IEEE T IMAGE P
[8]   DE-NOISING BY SOFT-THRESHOLDING [J].
DONOHO, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (03) :613-627
[9]  
HENSEN PC, 1999, 9915 IMM REP TU DENM
[10]   OPTIMAL APPROXIMATIONS BY PIECEWISE SMOOTH FUNCTIONS AND ASSOCIATED VARIATIONAL-PROBLEMS [J].
MUMFORD, D ;
SHAH, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (05) :577-685