Graphene electrochemistry: Fabricating amperometric biosensors

被引:56
作者
Brownson, Dale A. C. [1 ]
Banks, Craig E. [1 ]
机构
[1] Manchester Metropolitan Univ, Div Chem & Environm Sci, Sch Sci & Environm, Fac Sci & Engn, Manchester M1 5GD, Lancs, England
关键词
MODIFIED ELECTRODES; GLUCOSE BIOSENSORS; CARBON ELECTRODE; COMPOSITE FILM; NAFION; GRAPHITE;
D O I
10.1039/c0an00875c
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The electrochemical sensing of hydrogen peroxide is of substantial interest to the operation of oxidase-based amperometric biosensors. We explore the fabrication of a novel and highly sensitive electro-analytical biosensor using well characterised commercially available graphene and compare and contrast responses using Nafion -graphene and -graphite modified electrodes. Interestingly we observe that graphite exhibits a superior electrochemical response due to its enhanced percentage of edge plane sites when compared to graphene. However, when Nafion, routinely used in amperometric biosensors, is introduced onto graphene and graphite modified electrodes, re-orientation occurs in both cases which is beneficial in the former and detrimental in the latter; insights into this contrasting behaviour are consequently presented providing acuity into sensor design and development where graphene is utilised in biosensors.
引用
收藏
页码:2084 / 2089
页数:6
相关论文
共 28 条
[1]   Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites [J].
Banks, CE ;
Davies, TJ ;
Wildgoose, GG ;
Compton, RG .
CHEMICAL COMMUNICATIONS, 2005, (07) :829-841
[2]   Aerotolerance of strictly anaerobic microorganisms and factors of defense against oxidative stress: A review [J].
Brioukhanov, A. L. ;
Netrusov, A. I. .
APPLIED BIOCHEMISTRY AND MICROBIOLOGY, 2007, 43 (06) :567-582
[3]   Graphene Electrochemistry: Surfactants Inherent to Graphene Can Dramatically Effect Electrochemical Processes [J].
Brownson, Dale A. C. ;
Metters, Jonathan P. ;
Kampouris, Dimitrios K. ;
Banks, Craig E. .
ELECTROANALYSIS, 2011, 23 (04) :894-899
[4]   Graphene electrochemistry: Surfactants inherent to graphene inhibit metal analysis [J].
Brownson, Dale A. C. ;
Banks, Craig E. .
ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (02) :111-113
[5]   Graphene electrochemistry: an overview of potential applications [J].
Brownson, Dale A. C. ;
Banks, Craig E. .
ANALYST, 2010, 135 (11) :2768-2778
[6]   Self-Assembly of Cationic Polyelectrolyte-Functionalized Graphene Nanosheets and Gold Nanoparticles: A Two-Dimensional Heterostructure for Hydrogen Peroxide Sensing [J].
Fang, Youxing ;
Guo, Shaojun ;
Zhu, Chengzhou ;
Zhai, Yueming ;
Wang, Erkang .
LANGMUIR, 2010, 26 (13) :11277-11282
[7]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[8]   Multilayer graphene nanoribbons exhibit larger capacitance than their few-layer and single-layer graphene counterparts [J].
Goh, Madeline Shuhua ;
Pumera, Martin .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (10) :1375-1377
[9]   Single-, Few-, and Multilayer Graphene Not Exhibiting Significant Advantages over Graphite Microparticles in Electroanalysis [J].
Goh, Madeline Shuhua ;
Pumera, Martin .
ANALYTICAL CHEMISTRY, 2010, 82 (19) :8367-8370
[10]   Solution Phase Production of Graphene with Controlled Thickness via Density Differentiation [J].
Green, Alexander A. ;
Hersam, Mark C. .
NANO LETTERS, 2009, 9 (12) :4031-4036