Finding the alpha n-th largest element

被引:6
作者
Dor, D [1 ]
Zwick, U [1 ]
机构
[1] TEL AVIV UNIV,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,SCH MATH SCI,DEPT COMP SCI,IL-69978 TEL AVIV,ISRAEL
关键词
D O I
10.1007/BF01300126
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe an algorithm for selecting the alpha n-th largest element (where 0 < alpha < 1), from a totally ordered set of n elements, using at most (1+(1+o(1))H(alpha)). n comparisons, where H(alpha) is the binary entropy function and the o(1) stands for a function that tends to 0 as alpha tends to 0. For small values of alpha this is almost the best possible as there is a lower bound of about (1 + H(alpha)). n comparisons. The algorithm obtained beats the global 3n upper bound of Schonhage, Paterson and Pippenger for alpha < 1/3.
引用
收藏
页码:41 / 58
页数:18
相关论文
共 16 条
[1]  
BENT SW, 1985, 17TH P ANN ACM S THE, P213
[2]  
Blum M., 1973, Journal of Computer and System Sciences, V7, P448, DOI 10.1016/S0022-0000(73)80033-9
[3]  
CARROLL L, 1993, COMPLETE STOREIS L C, P775
[4]   AVERAGE CASE SELECTION [J].
CUNTO, W ;
MUNRO, JI .
JOURNAL OF THE ACM, 1989, 36 (02) :270-279
[5]  
DOR D, 1995, PROCEEDINGS OF THE SIXTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P28
[6]   EXPECTED TIME BOUNDS FOR SELECTION [J].
FLOYD, RW ;
RIVEST, RL .
COMMUNICATIONS OF THE ACM, 1975, 18 (03) :165-172
[7]  
Hadian A., 1969, COMB THEORY APPL, V4, P585
[8]   A NEW LOWER BOUND FOR THE SET-PARTITIONING PROBLEM [J].
JOHN, JW .
SIAM JOURNAL ON COMPUTING, 1988, 17 (04) :640-647
[9]  
Kislitsyn S. S., 1964, SIBIRSKII MATEMATICH, V5, P557
[10]  
Knuth D. E., 1973, The Art of Computer Programming Volume 3, Sorting and Searching, VIII