New Sn-based composites as anode materials for Li-ion batteries

被引:34
作者
Aboulaich, A. [1 ]
Mouyane, M. [1 ]
Robert, F. [1 ]
Lippens, P. -E. [1 ]
Olivier-Fourcade, J. [1 ]
Willmann, P. [2 ]
Jumas, J. C. [1 ]
机构
[1] Univ Montpellier 2, CNRS UMR 5072, Lab Agregats Mol & Mat Inorgan, F-34095 Montpellier 5, France
[2] Ctr Natl Etud Spatiales, F-31401 Toulouse, France
关键词
Sn-based composites; lithium-ion batteries; Conversion Electron Mossbauer Spectroscopy; anode materials; tin based glass;
D O I
10.1016/j.jpowsour.2007.06.173
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new strategy was developed to synthesize tin-composite materials. The Sn:BPO4 and Sn:CaSiO3 composites were obtained by solid state reaction, but the BPO4 and CaSiO3 matrices were synthesized by solid state reaction and sol-gel method, respectively. These materials are characterized by X-ray diffraction, Sn-119 Mossbauer spectroscopy and electrochemical tests. The results show that these new materials are efficient during electrochemical cycling (500 mAh g(-1)), because of a good dispersion of Sn particles into the matrix. From the second cycle, charge and discharge reversibility is linked to both reversible LixSn alloy forming and the modification of the tin particle surface showed by Conversion Electron Mossbauer spectroscopy (CEMS) which allows us to characterize the sample surface. The irreversible capacity observed for the first charge/discharge cycle is due to tin oxide reduction and passivation of the anode surface by electrolyte solution decomposition (SEI layer). (C) 2007 Published by Elsevier B.V.
引用
收藏
页码:1224 / 1228
页数:5
相关论文
共 13 条
  • [1] In situ 119Sn Mossbauer spectroscopy study of Sn-based electrode materials
    Aboulaich, Abdelmaula
    Robert, Florent
    Lippens, Pierre Emmanuel
    Aldon, Laurent
    Olivier-Fourcade, Josette
    Willmann, Patrick
    Jumas, Jean-Claude
    [J]. HYPERFINE INTERACTIONS, 2006, 167 (1-3): : 733 - 738
  • [2] BAKGAT AA, 1980, PHYS STATUS SOLIDI B, V97, pK129
  • [3] Influence of structure and composition upon performance of tin phosphate based negative electrodes for lithium batteries
    Behm, M
    Irvine, JTS
    [J]. ELECTROCHIMICA ACTA, 2002, 47 (11) : 1727 - 1738
  • [4] Lithium intercalation in tin oxide
    Chouvin, J
    Branci, C
    Sarradin, J
    Olivier-Fourcade, J
    Jumas, JC
    Simon, B
    Biensan, P
    [J]. JOURNAL OF POWER SOURCES, 1999, 81 : 277 - 281
  • [5] Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites
    Courtney, IA
    Dahn, JR
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (06) : 2045 - 2052
  • [6] The use of composition and high pressure to extend the range of α-quartz isotypes.
    Haines, J
    Chateau, C
    Leger, JM
    Marchand, R
    [J]. ANNALES DE CHIMIE-SCIENCE DES MATERIAUX, 2001, 26 (01): : 209 - 216
  • [7] Tin-based amorphous oxide: A high-capacity lithium-ion-storage material
    Idota, Y
    Kubota, T
    Matsufuji, A
    Maekawa, Y
    Miyasaka, T
    [J]. SCIENCE, 1997, 276 (5317) : 1395 - 1397
  • [8] A new ceramic lithium solid electrolyte for rechargeable swing type batteries
    Kelder, EM
    Jak, MJG
    deLange, F
    Schoonman, J
    [J]. SOLID STATE IONICS, 1996, 85 (1-4) : 285 - 291
  • [9] Amorphous Sn2P2O7, Sn2B2O5 and Sn2BPO6 anodes for lithium ion batteries
    Lee, JY
    Xiao, YW
    Liu, ZL
    [J]. SOLID STATE IONICS, 2000, 133 (1-2) : 25 - 35
  • [10] Electrical conductivity of the CaO-SiO2 system in the solid and the molten states
    Malki, M
    Echegut, P
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2003, 323 (1-3) : 131 - 136