The role of methionine 156 in cross-subunit nucleotide interactions in the iron protein of nitrogenase

被引:26
作者
Bursey, EH [1 ]
Burgess, BK [1 ]
机构
[1] Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA
关键词
D O I
10.1074/jbc.273.45.29678
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A variant Fe protein has been created at the completely conserved residue methionine 156 by changing it to cysteine. The Azotobacter vinelandii strain expressing M156C is unable to grow under nitrogen-fixing conditions, and the purified protein cannot support Substrate reduction in vitro. This mutation has an effect on the Fe protein's ability to undergo the MgATP-induced conformational change as evidenced by the fact that M156C is chelated in the presence of MgATP with a lower observed rate than wild-type. While the electron paramagnetic resonance spectra of this protein are similar to those of the wild-type Fe protein, the circular dichroism spectrum is markedly different in the presence of MgATP, showing that the conformation adopted by M156C following nucleotide binding is different from the wild-type conformation. Although competition activity and chelation assays show that this Fe protein can still form a complex with the MoFe protein, this altered conformation only supports MgATP hydrolysis at 1% the rate of wild-type Fe protein. A model based on x-ray crystallographic information is presented to explain the importance of Met-156 in stabilization of the correct conformation of the Fe protein via critical interactions of the residue with Asp-43 and nucleotide in the other subunit.
引用
收藏
页码:29678 / 29685
页数:8
相关论文
共 46 条