A dual ascent method for the portfolio selection problem with multiple constraints and linked proposals

被引:20
作者
Syam, SS [1 ]
机构
[1] Marquette Univ, Coll Business Adm, Dept Management, Milwaukee, WI 53201 USA
关键词
mathematical programming; finance; portfolio selection; quadratic integer programming;
D O I
10.1016/S0377-2217(97)00048-9
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Portfolio selection is an important but complicated topic in finance. This paper uses quadratic and integer programming methods (dual ascent, branch-and-bound) to solve portfolio selection problems involving risk (variance), return, multiple restrictions (constraints), and proposals that are linked in various ways. A detailed description of the methodology is provided, along with extensive computational results on a variety of problems. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:196 / 207
页数:12
相关论文
共 24 条
[1]  
BRETTHAUER K, 1995, ORSA J COMPUTING, V7, P108
[2]  
Cottle R.W., 1972, Mathematical Programming, V3, P210
[3]  
DESOPO DA, 1959, NAV RES LOG, V1, P33
[4]   A SURROGATE RELAXATION BASED ALGORITHM FOR A GENERAL QUADRATIC MULTI-DIMENSIONAL KNAPSACK-PROBLEM [J].
DJERDJOUR, M ;
MATHUR, K ;
SALKIN, HM .
OPERATIONS RESEARCH LETTERS, 1988, 7 (05) :253-258
[5]   SIMPLE CRITERIA FOR OPTIMAL PORTFOLIO SELECTION WITH UPPER BOUNDS [J].
ELTON, EJ ;
GRUBER, MJ ;
PADBERG, MW .
OPERATIONS RESEARCH, 1977, 25 (06) :952-967
[6]   SIMPLE CRITERIA FOR OPTIMAL PORTFOLIO SELECTION [J].
ELTON, EJ ;
GRUBER, MJ ;
PADBERG, MW .
JOURNAL OF FINANCE, 1976, 31 (05) :1341-1357
[7]  
GALLO G, 1980, MATH PROGRAM, V6, P62
[8]  
GEOFFRION AM, 1970, MANAGE SCI, V11, P652
[9]   A POLYNOMIALLY BOUNDED ALGORITHM FOR A SINGLY CONSTRAINED QUADRATIC PROGRAM [J].
HELGASON, R ;
KENNINGTON, J ;
LALL, H .
MATHEMATICAL PROGRAMMING, 1980, 18 (03) :338-343
[10]  
*INT BUS MACH INC, 1965, 1401 PORTF SEL PROGR