Modified burg algorithms for multivariate subset autoregression

被引:3
作者
Brockwell, PJ [1 ]
Dahlhaus, R
Trindade, AA
机构
[1] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
[2] Heidelberg Univ, Inst Angew Math, D-69120 Heidelberg, Germany
[3] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
关键词
lattice algorithm; linear prediction; multistep prediction; multivariate autoregression; recursive autoregression; VAR process;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Lattice algorithms for estimating the parameters of a multivariate autoregression are generalized to deal with subset models in which some of the coefficient matrices are constrained to be zero. We first establish a recursive prediction-error version of the empirical Yule-Walker equations. The estimated coefficient matrices obtained from these recursions are the coefficients of the best linear one-step predictors of the process under the assumption that the autocovariance function is the same as the sample autocovariance function. By modifying the recursions to allow for certain inherent shortcomings, we then derive new estimators which generalize the Vieira-Morf, Nutall-Strand and Burg estimators to the multivariate subset case. We show that the new estimators minimize weighted sums of squares of the forward and backward prediction errors in recursive schemes which closely resemble the original scheme of Burg. The performances of the estimators are compared in a simulation study.
引用
收藏
页码:197 / 213
页数:17
相关论文
共 15 条
[1]  
[Anonymous], 1978, APPL TIME SERIES ANA, DOI DOI 10.1016/B978-0-12-257250-0.50009-X
[2]   Generalized Levinson-Durbin and Burg algorithms [J].
Brockwell, PJ ;
Dahlhaus, R .
JOURNAL OF ECONOMETRICS, 2004, 118 (1-2) :129-149
[3]  
Burg J. P., 1968, ADV STUDY I SIGNAL P
[4]  
Haykin SS., 2008, ADAPTIVE FILTER THEO
[5]  
Itakura F., 1971, Proceedings of the 7th International congress on acoustics, P261
[6]   STABLE AND EFFICIENT LATTICE METHODS FOR LINEAR PREDICTION [J].
MAKHOUL, J .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1977, 25 (05) :423-428
[7]   SUBSET AUTOREGRESSION [J].
MCCLAVE, J .
TECHNOMETRICS, 1975, 17 (02) :213-220
[8]   RECURSIVE MULTICHANNEL MAXIMUM ENTROPY SPECTRAL ESTIMATION [J].
MORF, M ;
VIEIRA, A ;
LEE, DTL ;
KAILATH, T .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1978, 16 (02) :85-94
[9]  
NUTALL AH, 1976, 5501 NAV UN SYST CTR
[10]  
Penm J.H.W., 1982, J. of Time Ser Anal., V3, P43