Data mining: Qualitative analysis with health informatics data

被引:16
作者
Castellani, B [1 ]
Castellani, J
机构
[1] Kent State Univ, Ashtabula, OH USA
[2] Johns Hopkins Univ, Ctr Technol Educ, Columbia, MD USA
关键词
qualitative method; data mining; neural networking; decision tree analysis; complexity theory;
D O I
10.1177/1049732303253523
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
The new computational algorithms emerging in the data mining literature-in particular, the self-organizing map (SOM) and decision tree analysis (DTA)-offer qualitative researchers a unique set of tools for analyzing health informatics data. The uniqueness of these tools is that although they can be used to find meaningful patterns in large, complex quantitative databases, they are qualitative in orientation. To illustrate the utility of these tools, the authors review the two most popular: the SOM and DTA. They provide a basic definition of health informatics, focusing on how data mining assists this field, and apply the SOM and DTA to a hypothetical example to demonstrate what these tools are and how qualitative researchers can use them.
引用
收藏
页码:1005 / 1018
页数:14
相关论文
共 24 条
[1]  
[Anonymous], MED DATA MINING KNOW
[2]  
Berry M.J., 2000, MASTERING DATA MININ
[3]  
Breiman L., 1984, BIOMETRICS, DOI DOI 10.2307/2530946
[4]  
Capra F., 1996, WEB LIFE
[5]  
CASTELLANI B, IN PRESS SYMBOLIC IN
[6]  
CILLIERS P, 1998, COMPLEXITY POSTMODEN
[7]  
ENGLEBARDT S, 2002, HLTH CARE INFORMATIC
[8]  
Garson D., 1998, Neural Networks: An Introductory Guide for Social Scientists (New Technologies for Social Research Series)
[9]  
Glaser B., 2006, DISCOV GROUNDED THEO
[10]  
Han J., 2012, Data Mining, P393, DOI [DOI 10.1016/B978-0-12-381479-1.00009-5, 10.1016/B978-0-12-381479-1.00001-0]