Modeling intra-subject correlation among repeated scans in positron emission tomography (PET) neuroimaging data

被引:10
作者
Bowman, FD
Kilts, C
机构
[1] Emory Univ, Rollins Sch Publ Hlth, Dept Biostat, Atlanta, GA 30322 USA
[2] Emory Univ, Dept Psychiat & Behav Sci, Atlanta, GA 30322 USA
[3] Emory Univ, Ctr Positron Emiss Tomog, Atlanta, GA 30322 USA
关键词
repeated measures; covariance model; correlation maps; non-sphericity; mixed effects model; missing data; restricted maximum likelihood; social anxiety disorder;
D O I
10.1002/hbm.10127
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Many in vivo positron emission tomography (PET) neuroimaging studies record correlates of regional cerebral blood flow (rCBF) in a series of scans for each individual, usually under different experimental conditions. Typical methods for statistical analysis involve fitting voxel-specific general linear models (GLM) that assume spherical normal errors, implying that all voxel-specific rCBF measurements are independent and arise from identical normal probability distributions. While the spherical GLM provides a unified and computationally efficient approach to estimation, the likely correlations among an individual's repeated scans and heteroscedasticity between conditions prompt the use of extended statistical methodology. We outline a more general method to analyze PET data using random effects and correlated errors to model unequal variances across conditions as well as covariances (correlations) among the repeated scans for each individual. We introduce correlation maps to display intra-subject correlations between an individual's rCBF measurements from different scans. We illustrate the application of our model using data from a study of social anxiety and highlight analytical advantages over the spherical (C) 2003 Wiley-Liss, Inc.
引用
收藏
页码:59 / 70
页数:12
相关论文
共 19 条
[1]   Statistical methods of estimation and inference for functional MR image analysis [J].
Bullmore, E ;
Brammer, M ;
Williams, SCR ;
Rabehesketh, S ;
Janot, N ;
David, A ;
Mellers, J ;
Howard, R ;
Sham, P .
MAGNETIC RESONANCE IN MEDICINE, 1996, 35 (02) :261-277
[2]   ESTIMATION IN COVARIANCE COMPONENTS MODELS [J].
DEMPSTER, AP ;
RUBIN, DB ;
TSUTAKAWA, RK .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1981, 76 (374) :341-353
[3]  
Diggle P. J., 2002, ANAL LONGITUDINAL DA
[4]   THE RELATIONSHIP BETWEEN GLOBAL AND LOCAL CHANGES IN PET SCANS [J].
FRISTON, KJ ;
FRITH, CD ;
LIDDLE, PF ;
DOLAN, RJ ;
LAMMERTSMA, AA ;
FRACKOWIAK, RSJ .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1990, 10 (04) :458-466
[5]   Multisubject fMRI studies and conjunction analyses [J].
Friston, KJ ;
Holmes, AP ;
Price, CJ ;
Büchel, C ;
Worsley, KJ .
NEUROIMAGE, 1999, 10 (04) :385-396
[6]   ANALYSIS OF FMRI TIME-SERIES REVISITED [J].
FRISTON, KJ ;
HOLMES, AP ;
POLINE, JB ;
GRASBY, PJ ;
WILLIAMS, SCR ;
FRACKOWIAK, RSJ ;
TURNER, R .
NEUROIMAGE, 1995, 2 (01) :45-53
[7]   Classical and Bayesian inference in neuroimaging: Applications [J].
Friston, KJ ;
Glaser, DE ;
Henson, RNA ;
Kiebel, S ;
Phillips, C ;
Ashburner, J .
NEUROIMAGE, 2002, 16 (02) :484-512
[8]  
FRISTON KJ, 1997, SPM COURSE NOTES
[9]  
Holmes A. P., 1998, NeuroImage, V7, pS754, DOI DOI 10.1016/S1053-8119(18)31587-8
[10]   RANDOM-EFFECTS MODELS FOR LONGITUDINAL DATA [J].
LAIRD, NM ;
WARE, JH .
BIOMETRICS, 1982, 38 (04) :963-974