In vitro binding studies of drugs to hair: Influence of melanin and lipids on cocaine binding to Caucasoid and Africoid hair

被引:78
作者
Joseph, RE [1 ]
Su, TP [1 ]
Cone, EJ [1 ]
机构
[1] NIDA,DIV INTRAMURAL RES,ADDICT RES CTR,BALTIMORE,MD 21224
关键词
D O I
10.1093/jat/20.6.338
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Although the mechanism(s) of drug deposition in hair are unknown, there is evidence that suggests that the amount and type of melanin present are major factors in determining how much drug enters hair after exposure. The role of other hair components, such as lipids, has received less attention. We used in vitro binding techniques to evaluate the binding of radiolabeled cocaine to different types of treated and untreated hair specimens. Divided male and female Caucasoid (black/brown and blond colored) and Africoid (black colored) hair specimens (N = 7) were exhaustively extracted to remove lipid components (lipid-extracted hair). Separate portions were bleached to denature or after melanin content. Experiments with radiolabeled cocaine were performed on untreated, lipid-extracted, and bleached portions of hair from different groups. Cocaine binding was significantly higher (p < .01) to male Africoid hair compared with other groups. The amount of drug binding was similar among female Africoid and male and female, black/brown Caucasoid specimens. The lowest amount of binding was observed with blond, female Caucasoid specimens. Binding experiments also revealed that specific cocaine binding generally did not differ significantly between lipid-extracted hair and untreated hair, but bleaching of most hair specimens resulted in significant (p < .01) decreases in specific binding compared with untreated hair. In separate experiments with cocaine-treated hair specimens, digested samples were evaluated to determine if removal of the insoluble melanin fraction from soluble hair components provided a means of normalization of drug content and elimination of color bias. Removal of the insoluble melanin fraction was not effective in removal of significant amounts of cocaine, which indicated that the digestion process released bound cocaine into the digest solution. Overall, these experiments suggested that lipids in hair play a minor role in drug binding, whereas melanin functions as a major binding site for cocaine. Natural (ethnic) or artificial (bleaching) differences in melanin content may determine the extent of cocaine entrapment in hair after drug exposure. Further, digestion of hair samples and removal of insoluble melanin failed to be effective in removal of hair color bias.
引用
收藏
页码:338 / 344
页数:7
相关论文
共 30 条
[1]  
BAUMGARTNER WA, 1994, Patent No. 5324642
[2]   COMPETITIVE BINDING BETWEEN COCAINE AND VARIOUS DRUGS TO SYNTHETIC LEVODOPA MELANIN [J].
BAWEJA, R ;
SOKOLOSKI, TD ;
PATIL, PN .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1977, 66 (11) :1544-1547
[3]   TESTING HUMAN HAIR FOR DRUGS OF ABUSE .2. IDENTIFICATION OF UNIQUE COCAINE METABOLITES IN HAIR OF DRUG-ABUSERS AND EVALUATION OF DECONTAMINATION PROCEDURES [J].
CONE, EJ ;
YOUSEFNEJAD, D ;
DARWIN, WD ;
MAGUIRE, T .
JOURNAL OF ANALYTICAL TOXICOLOGY, 1991, 15 (05) :250-255
[4]   DRUG-TESTING BY URINE AND HAIR ANALYSIS - COMPLEMENTARY FEATURES AND SCIENTIFIC ISSUES [J].
DUPONT, RL ;
BAUMGARTNER, WA .
FORENSIC SCIENCE INTERNATIONAL, 1995, 70 (1-3) :63-76
[5]   The effect of hair color on the incorporation of methadone into hair in the rat [J].
Green, ST ;
Wilson, OF .
JOURNAL OF ANALYTICAL TOXICOLOGY, 1996, 20 (02) :121-123
[6]  
Gygi SP, 1996, DRUG METAB DISPOS, V24, P495
[7]   ANATOMY AND PHYSIOLOGY OF HAIR [J].
HARKEY, MR .
FORENSIC SCIENCE INTERNATIONAL, 1993, 63 (1-3) :9-18
[8]  
Henderson GL, 1996, J ANAL TOXICOL, V20, P1
[9]  
KIDWELL DA, 1995, HAIR TESTING DRUGS A, P19
[10]   STUDIES ON THE MECHANISM OF DRUG-BINDING TO MELANIN [J].
LARSSON, B ;
TJALVE, H .
BIOCHEMICAL PHARMACOLOGY, 1979, 28 (07) :1181-1187