A contextual multiscale unsupervised method for change detection with multitemporal remote-sensing images

被引:4
作者
Moser, Gabriele [1 ]
Angiati, Elena [1 ]
Serpico, Sebastiano B. [1 ]
机构
[1] Univ Genoa, Dept Biophys & Elect Eng DIBE, Genoa, Italy
来源
2009 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS | 2009年
关键词
Multiscale change detection; unsupervised change detection; discrete wavelet transforms; Markov random fields; expectation-maximization; Besag's algorithm; CLASSIFICATION; MODEL;
D O I
10.1109/ISDA.2009.102
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Change-detection represents a powerful tool for monitoring the evolution of the Earth's surface by multitemporal remote-sensing imagery. Here, a multiscale approach is proposed, in which observations at coarser and finer scales are jointly exploited, and a multiscale contextual unsupervised change-detection method is developed for optical images. Discrete wavelet transforms are applied to extract multiscale features that discriminate changed and unchanged areas and Markovian data fusion is used to integrate both these features and the spatial contextual information in the change-detection process. Unsupervised statistical learning methods (expectation-maximization and Besag's algorithms) are used to estimate the model parameters. Experiments on burnt-forest area detection in multitemporal Landsat TM images are presented.
引用
收藏
页码:572 / 577
页数:6
相关论文
共 20 条
[1]   An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images [J].
Bazi, Y ;
Bruzzone, L ;
Melgani, F .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (04) :874-887
[2]  
BESAG J, 1986, J R STAT SOC B, V48, P259
[3]   A detail-preserving scale-driven approach to change detection in multitemporal SAR images [J].
Bovolo, F ;
Bruzzone, L .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (12) :2963-2972
[4]  
Daubechies Ingrid, 1992, Journal of the Acoustical Society of America
[5]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[6]  
Fukunaga K., 1990, Introduction to Statistical Pattern Recognition, DOI DOI 10.5555/92131
[7]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741
[8]  
Hall O., 2003, INT J APPL EARTH OBS, V4, P311, DOI DOI 10.1016/S0303-2434(03)00010-2
[9]   Multivariate Gaussian MRF for multispectral scene segmentation and anomaly detection [J].
Hazel, GG .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (03) :1199-1211
[10]  
INGLADA J, 2007, IEEE T GEOSCI REMOTE, V45