Numerical approximation to the thermodynamic integrals

被引:28
作者
Johns, SM [1 ]
Ellis, PJ [1 ]
Lattimer, JM [1 ]
机构
[1] SUNY STONY BROOK,DEPT EARTH & SPACE SCI,STONY BROOK,NY 11794
关键词
elementary particles; equation of state; methods; numerical;
D O I
10.1086/178212
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We approximate boson thermodynamic integrals as polynomials in two variables chosen to give the correct limiting expansion and to smoothly interpolate into other regimes. With 10 Gee parameters, an accuracy of better than 0.009% is achieved for the pressure, internal energy density, and number density. We also revisit the fermion case, originally addressed by Eggleton, Faulkner, & Flannery (1973), and substantially improve the accuracy of their fits.
引用
收藏
页码:1020 / 1028
页数:9
相关论文
共 7 条
[1]  
Abramowitz M., 1965, Handbook of Mathematical Functions, Dover Books on Mathematics
[2]  
CHANDRASEKHAR S, 1958, INTRO STELLAR STRUCT
[3]  
EGGLETON PP, 1973, ASTRON ASTROPHYS, V23, P325
[4]  
Erdelyi A, 1953, HIGH TRANSCENDENTAL, V1, P27
[5]   ON THE RELATIVISTIC BOSE EINSTEIN INTEGRALS [J].
HABER, HE ;
WELDON, HA .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (10) :1852-1858
[6]   FINITE-TEMPERATURE SYMMETRY-BREAKING AS BOSE-EINSTEIN CONDENSATION [J].
HABER, HE ;
WELDON, HA .
PHYSICAL REVIEW D, 1982, 25 (02) :502-525
[7]   APPROXIMATE INPUT PHYSICS FOR STELLAR MODELING [J].
POLS, OR ;
TOUT, CA ;
EGGLETON, PP ;
HAN, ZW .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1995, 274 (03) :964-974