Cloned blood-brain barrier adenosine transporter is identical to the rat concentrative Na+ nucleoside cotransporter CNT2

被引:58
作者
Li, JY [1 ]
Boado, RJ [1 ]
Pardridge, WM [1 ]
机构
[1] Univ Calif Los Angeles, Sch Med, Dept Med, Los Angeles, CA 90024 USA
关键词
adenosine; biologic transport; blood-brain barrier; cotransporters; sodium;
D O I
10.1097/00004647-200108000-00005
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Adenosine transport into brain is regulated by the activity of the adenosine transporter located at the brain capillary endothelial wall, which forms the blood-brain barrier (BBB) in vivo. To facilitate cloning of BBB adenosine transporters, poly A+ RNA was purified from isolated rat brain capillaries for production of a rat BBB cDNA library in the pSPORT vector. The cloned RNA (cRNA) generated from in vitro transcription of this library was injected into frog oocytes followed by measurement of [H-3]-adenosine uptake. After dilutional cloning, a full-length, 2905-nucleotide adenosine transporter cDNA, designated clone A-11, was isolated. The A-11 clone yielded [H-3]-adenosine flux ratios of 400 to 500 after injection of cRNA in oocytes. The adenosine uptake was sodium-dependent and insensitive to inhibition by S-(4-nitrobenzyl)-6-thioinosine (NBTI). The K-m and V-max of adenosine transport in the cRNA-injected oocytes were 23.1 +/- 3.7 mu mol/L and 10.8 +/- 0.9 pmol/oocyte . min. The K-0.5 for sodium was 2.4 +/- 0.1 mmol/L, with a Hill coefficient (n) of 1.06 +/- 0.07. DNA sequence analysis indicated the rat BBB A-11 adenosine cDNA was identical to rat concentrative nucleoside transporter type 2 (CNT2). The adenosine transporter activity of the rat BBB A-11 CNT2 clone is 50-fold more active than previously reported rat CNT2 clones. In summary, these studies describe the expression cloning of CNT2 from a rat BBB library and show that the pattern of sodium dependency and NBTI insensitivity of the cloned CNT2 are identical to patterns of adenosine transport across the BBB in vivo. These results suggest that BBB adenosine transport in vivo is mediated by CNT2, which would make CNT2 one of the few known sodium-dependent cotransporters that mediate substrate transport across the BBB in the blood to brain direction.
引用
收藏
页码:929 / 936
页数:8
相关论文
共 27 条
[1]   Distribution of mRNA encoding a nitrobenzylthioinosine-insensitive nucleoside transporter (ENT2) in rat brain [J].
Anderson, CM ;
Baldwin, SA ;
Young, JD ;
Cass, CE ;
Parkinson, FE .
MOLECULAR BRAIN RESEARCH, 1999, 70 (02) :293-297
[2]  
BERNE RM, 1983, FED PROC, V42, P3136
[3]   NUCLEAR POLYADENYLATION FACTORS RECOGNIZE CYTOPLASMIC POLYADENYLATION ELEMENTS [J].
BILGER, A ;
FOX, CA ;
WAHLE, E ;
WICKENS, M .
GENES & DEVELOPMENT, 1994, 8 (09) :1106-1116
[4]  
BOADO R J, 1990, Molecular and Cellular Neuroscience, V1, P224, DOI 10.1016/1044-7431(90)90005-O
[5]   A ONE-STEP PROCEDURE FOR ISOLATION OF POLY(A)+ MESSENGER-RNA FROM ISOLATED BRAIN CAPILLARIES AND ENDOTHELIAL-CELLS IN CULTURE [J].
BOADO, RJ ;
PARDRIDGE, WM .
JOURNAL OF NEUROCHEMISTRY, 1991, 57 (06) :2136-2139
[6]   Selective expression of the large neutral amino acid transporter at the blood-brain barrier [J].
Boado, RJ ;
Li, JY ;
Nagaya, M ;
Zhang, C ;
Pardridge, WM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (21) :12079-12084
[7]   Anticonvulsant A1 receptor-mediated adenosine action on neuronal networks in the brainstem-spinal cord of newborn rats [J].
Brockhaus, J ;
Ballanyi, K .
NEUROSCIENCE, 2000, 96 (02) :359-371
[8]   Recent advances in the molecular biology of nucleoside transporters of mammalian cells [J].
Cass, CE ;
Young, JD ;
Baldwin, SA .
BIOCHEMISTRY AND CELL BIOLOGY-BIOCHIMIE ET BIOLOGIE CELLULAIRE, 1998, 76 (05) :761-770
[9]   PRIMARY STRUCTURE AND FUNCTIONAL EXPRESSION OF A CDNA-ENCODING THE BILE CANALICULAR, PURINE-SPECIFIC NA+-NUCLEOSIDE COTRANSPORTER [J].
CHE, MX ;
ORTIZ, DF ;
ARIAS, IM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (23) :13596-13599
[10]   INDEPENDENT BLOOD-BRAIN-BARRIER TRANSPORT-SYSTEMS FOR NUCLEIC-ACID PRECURSORS [J].
CORNFORD, EM ;
OLDENDORF, WH .
BIOCHIMICA ET BIOPHYSICA ACTA, 1975, 394 (02) :211-219