The thermal degradation of a commercial, stabilized, unfilled nitrile (Buna-N) rubber material was investigated at temperatures in the range 85-140 degrees C. The resulting heterogeneous oxidation, due to diffusion limitations in oxygen availability, was studied using infrared microscopy and modulus profiling. Degradation-related spectral changes were observed primarily in the hydroxyl, carbonyl and ester regions; quantitative analysis revealed identical oxidation profiles for these chromophores. These chemical oxidation profiles (carbonyl formation) were correlated with mechanical modulus (hardness) profiles. Degradation of the sample proceeds via a linear increase in the carbonyl concentration, but an exponential increase in the modulus with time. It is concluded that the profile development and aging behavior can be described by a diffusion-limited autoxidation mechanism which can be modeled computationally. The results are compared to those of a previously studied carbon-black-filled material. Published by Elsevier Science Limited.