Self-Organization, Layered Structure, and Aggregation Enhance Persistence of a Synthetic Biofilm Consortium

被引:56
作者
Brenner, Katie [1 ]
Arnold, Frances H. [1 ]
机构
[1] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
来源
PLOS ONE | 2011年 / 6卷 / 02期
基金
美国国家卫生研究院;
关键词
EVOLUTIONARY PERSPECTIVE; SPATIAL STRUCTURE; COMMUNICATION; COMMUNITY; SELECTION; BACTERIA; MICROORGANISMS; POPULATIONS; COMPETITION; BEHAVIOR;
D O I
10.1371/journal.pone.0016791
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microbial consortia constitute a majority of the earth's biomass, but little is known about how these cooperating communities persist despite competition among community members. Theory suggests that non-random spatial structures contribute to the persistence of mixed communities; when particular structures form, they may provide associated community members with a growth advantage over unassociated members. If true, this has implications for the rise and persistence of multi-cellular organisms. However, this theory is difficult to study because we rarely observe initial instances of non-random physical structure in natural populations. Using two engineered strains of Escherichia coli that constitute a synthetic symbiotic microbial consortium, we fortuitously observed such spatial self-organization. This consortium forms a biofilm and, after several days, adopts a defined layered structure that is associated with two unexpected, measurable growth advantages. First, the consortium cannot successfully colonize a new, downstream environment until it self-organizes in the initial environment; in other words, the structure enhances the ability of the consortium to survive environmental disruptions. Second, when the layered structure forms in downstream environments the consortium accumulates significantly more biomass than it did in the initial environment; in other words, the structure enhances the global productivity of the consortium. We also observed that the layered structure only assembles in downstream environments that are colonized by aggregates from a previous, structured community. These results demonstrate roles for self-organization and aggregation in persistence of multi-cellular communities, and also illustrate a role for the techniques of synthetic biology in elucidating fundamental biological principles.
引用
收藏
页数:7
相关论文
共 36 条
[1]   Long-term monitoring of bacteria undergoing programmed population control in a microchemostat [J].
Balagaddé, FK ;
You, LC ;
Hansen, CL ;
Arnold, FH ;
Quake, SR .
SCIENCE, 2005, 309 (5731) :137-140
[2]   Bacterial linguistic communication and social intelligence [J].
Ben Jacob, E ;
Becker, I ;
Shapira, Y ;
Levine, H .
TRENDS IN MICROBIOLOGY, 2004, 12 (08) :366-372
[3]   Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere:: New perspectives for studying microbial communities [J].
Bloemberg, GV ;
Wijfjes, AHM ;
Lamers, GEM ;
Stuurman, N ;
Lugtenberg, BJJ .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2000, 13 (11) :1170-1176
[4]   Engineering microbial consortia: a new frontier in synthetic biology [J].
Brenner, Katie ;
You, Lingchong ;
Arnold, Frances H. .
TRENDS IN BIOTECHNOLOGY, 2008, 26 (09) :483-489
[5]   Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium [J].
Brenner, Katie ;
Karig, David K. ;
Weiss, Ron ;
Arnold, Frances H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (44) :17300-17304
[6]   Simpson's Paradox in a Synthetic Microbial System [J].
Chuang, John S. ;
Rivoire, Olivier ;
Leibler, Stanislas .
SCIENCE, 2009, 323 (5911) :272-275
[7]   BIOFILMS, THE CUSTOMIZED MICRONICHE [J].
COSTERTON, JW ;
LEWANDOWSKI, Z ;
DEBEER, D ;
CALDWELL, D ;
KORBER, D ;
JAMES, G .
JOURNAL OF BACTERIOLOGY, 1994, 176 (08) :2137-2142
[8]   The evolution of social behavior in microorganisms [J].
Crespi, BJ .
TRENDS IN ECOLOGY & EVOLUTION, 2001, 16 (04) :178-183
[9]   One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products [J].
Datsenko, KA ;
Wanner, BL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6640-6645
[10]   Survival strategies of infectious biofilms [J].
Fux, CA ;
Costerton, JW ;
Stewart, PS ;
Stoodley, P .
TRENDS IN MICROBIOLOGY, 2005, 13 (01) :34-40