Potential energy functions for an intramolecular proton transfer reaction in the ground and excited state

被引:8
作者
Cembran, Alessandro [1 ]
Gao, Jiali [1 ]
机构
[1] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA
关键词
D O I
10.1007/s00214-007-0272-z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We describe the development of empirical potential functions for the study of the excited state intramolecular proton transfer reaction in 1-(trifuloroacetylamino)-naphtaquinone (TFNQ). The potential is a combination of the standard CHARMM27 force field for the backbone structure of TFNQ and an empirical valence bond formalism for the proton transfer reaction. The latter is parameterized to reproduce the potential energies both in the ground and the excited state, determined at the CASPT2 level of theory. Parameters describing intermolecular interactions are fitted to reproduce molecular dipole moments computed at the CASSCF level of theory and to reproduce ab initio hydrogen bonding energies and geometries for TFNQ-water bimolecular complexes. The utility of this potential energy function was examined by computing the potentials of mean force for the proton transfer reactions in the gas phase and in water, in both electronic states. The ground state PMF exhibits little solvent effects, whereas computed potential of mean force shows a solvent stabilization of 2.5 kcal mol(-1) in the product state region, suggesting proton transfer is more pronounced in polar solvents, consistent with experimental findings.
引用
收藏
页码:211 / 218
页数:8
相关论文
共 55 条
[1]   SIMULATION OF ENZYME-REACTIONS USING VALENCE-BOND FORCE-FIELDS AND OTHER HYBRID QUANTUM-CLASSICAL APPROACHES [J].
AQVIST, J ;
WARSHEL, A .
CHEMICAL REVIEWS, 1993, 93 (07) :2523-2544
[2]   EXCITED-STATE PROTON-TRANSFER REACTIONS .1. FUNDAMENTALS AND INTERMOLECULAR REACTIONS [J].
ARNAUT, LG ;
FORMOSINHO, SJ .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 1993, 75 (01) :1-20
[3]   Excited states of conjugated hydrocarbons using the molecular mechanics-valence bond (MMVB) method: Conical intersections and dynamics [J].
Bearpark, Michael J. ;
Boggio-Pasqua, Martial ;
Robb, Michael A. ;
Ogliaro, Francois .
THEORETICAL CHEMISTRY ACCOUNTS, 2006, 116 (4-5) :670-682
[4]   Ab initio multiple spawning:: Photochemistry from first principles quantum molecular dynamics [J].
Ben-Nun, M ;
Quenneville, J ;
Martínez, TJ .
JOURNAL OF PHYSICAL CHEMISTRY A, 2000, 104 (22) :5161-5175
[5]   Ab initio quantum molecular dynamics [J].
Ben-Nun, M ;
Martínez, TJ .
ADVANCES IN CHEMICAL PHYSICS, VOLUME 121, 2002, 121 :439-512
[6]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[7]   Excited state intramolecular proton transfer in 1-(trifluoroacetylamino)naphthaquinone: a CASPT2//CASSCF computational study [J].
Cembran, A ;
Gao, JL .
MOLECULAR PHYSICS, 2006, 104 (5-7) :943-955
[8]   Combined ab initio/empirical approach for optimization of Lennard-Jones parameters for polar-neutral compounds [J].
Chen, IJ ;
Yin, DX ;
MacKerell, AD .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2002, 23 (02) :199-213
[9]   THE PROTON-TRANSFER LASER - GAIN SPECTRUM AND AMPLIFICATION OF SPONTANEOUS EMISSION OF 3-HYDROXYFLAVONE [J].
CHOU, P ;
MCMORROW, D ;
AARTSMA, TJ ;
KASHA, M .
JOURNAL OF PHYSICAL CHEMISTRY, 1984, 88 (20) :4596-4599
[10]   REPRESENTATION OF THE MOLECULAR ELECTROSTATIC POTENTIAL BY A NET ATOMIC CHARGE MODEL [J].
COX, SR ;
WILLIAMS, DE .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1981, 2 (03) :304-323