Cellular mechanisms and local progenitor activation to regulate skeletal muscle mass

被引:48
作者
Cassano, Marco [1 ]
Quattrocelli, Mattia [1 ]
Crippa, Stefania [1 ]
Perini, Ilaria [1 ]
Ronzoni, Flavio [1 ,2 ]
Sampaolesi, Maurilio [1 ,2 ]
机构
[1] SCIL Katholieke Univ Leuven, B-3000 Louvain, Belgium
[2] Univ Pavia, I-27100 Pavia, Italy
关键词
Muscle hypertrophy; AKT; Magic-F1; FOXO TRANSCRIPTION FACTORS; GROWTH-FACTOR-I; DYSTROPHIN-GLYCOPROTEIN COMPLEX; SATELLITE CELL; IGF-I; STEM-CELL; MUSCULAR-DYSTROPHY; UBIQUITIN LIGASES; MDX MOUSE; MYOBLAST DIFFERENTIATION;
D O I
10.1007/s10974-010-9204-y
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Skeletal muscle hypertrophy is a result of increased load, such as functional and stretch-overload. Activation of satellite cells and proliferation, differentiation and fusion are required for hypertrophy of overloaded skeletal muscles. On the contrary, a dramatic loss of skeletal muscle mass determines atrophy settings. The epigenetic changes involved in gene regulation at DNA and chromatin level are critical for the opposing phenomena, muscle growth and atrophy. Physiological properties of skeletal muscle tissue play a fundamental role in health and disease since it is the most abundant tissue in mammals. In fact, protein synthesis and degradation are finely modulated to maintain an appropriate muscle mass. When the molecular signaling is altered muscle wasting and weakness occurred, and this happened in most common inherited and acquired disorders such as muscular dystrophies, cachexia, and age-related wasting. To date, there is no accepted treatment to improve muscle size and strength, and these conditions pose a considerable anxiety to patients as well as to public health. Several molecules, including Magic-F1, myostatin inhibitor, IGF, glucocorticoids and microRNAs are currently investigated to interfere positively in the blueprint of skeletal muscle growth and regeneration.
引用
收藏
页码:243 / 253
页数:11
相关论文
共 135 条
[1]   Dystrophin glycoprotein complex dysfunction: A regulatory link between muscular dystrophy and cancer cachexia [J].
Acharyya, S ;
Butchbach, MER ;
Sahenk, Z ;
Wang, HT ;
Saji, M ;
Carathers, M ;
Ringel, MD ;
Skipworth, RJE ;
Fearon, KCH ;
Hollingsworth, MA ;
Muscarella, P ;
Burghes, AHM ;
Rafael-Fortney, JA ;
Guttridge, DC .
CANCER CELL, 2005, 8 (05) :421-432
[2]   Skeletal muscle unweighting: spaceflight and ground-based models [J].
Adams, GR ;
Caiozzo, VJ ;
Baldwin, KM .
JOURNAL OF APPLIED PHYSIOLOGY, 2003, 95 (06) :2185-2201
[3]   Cellular and molecular responses to increased skeletal muscle loading after irradiation [J].
Adams, GR ;
Caiozzo, VJ ;
Haddad, F ;
Baldwin, KM .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2002, 283 (04) :C1182-C1195
[4]   Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats [J].
Adams, GR ;
McCue, SA .
JOURNAL OF APPLIED PHYSIOLOGY, 1998, 84 (05) :1716-1722
[5]   Early stimulation and late inhibition of extracellular signal-regulated kinase 1/2 phosphorylation by IGF-I: A potential mechanism mediating the switch in IGF-I action on skeletal muscle cell differentiation [J].
Adi, S ;
Bin-Abbas, B ;
Wu, NY ;
Rosenthal, SM .
ENDOCRINOLOGY, 2002, 143 (02) :511-516
[6]   REGULATION OF SKELETAL-MUSCLE SATELLITE CELL-PROLIFERATION AND DIFFERENTIATION BY TRANSFORMING GROWTH FACTOR-BETA, INSULIN-LIKE GROWTH FACTOR-I, AND FIBROBLAST GROWTH-FACTOR [J].
ALLEN, RE ;
BOXHORN, LK .
JOURNAL OF CELLULAR PHYSIOLOGY, 1989, 138 (02) :311-315
[7]   HEPATOCYTE GROWTH-FACTOR ACTIVATES QUIESCENT SKELETAL-MUSCLE SATELLITE CELLS IN-VITRO [J].
ALLEN, RE ;
SHEEHAN, SM ;
TAYLOR, RG ;
KENDALL, TL ;
RICE, GM .
JOURNAL OF CELLULAR PHYSIOLOGY, 1995, 165 (02) :307-312
[8]   Myostatin imposes reversible quiescence on embryonic muscle precursors [J].
Amthor, H ;
Otto, A ;
Macharia, R ;
McKinnell, I ;
Patel, K .
DEVELOPMENTAL DYNAMICS, 2006, 235 (03) :672-680
[9]   Follistatin regulates bone morphogenetic protein-7 (BMP-7) activity to stimulate embryonic muscle growth [J].
Amthor, H ;
Christ, B ;
Rashid-Doubell, F ;
Kemp, CF ;
Lang, E ;
Patel, K .
DEVELOPMENTAL BIOLOGY, 2002, 243 (01) :115-127
[10]   Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10T(1/2) mesenchymal multipotent cells [J].
Artaza, JN ;
Bhasin, S ;
Magee, TR ;
Reisz-Porszasz, S ;
Shen, RQ ;
Groome, NP ;
Fareez, MM ;
Gonzalez-Cadavid, NF .
ENDOCRINOLOGY, 2005, 146 (08) :3547-3557