Portfolio dominance and optimality in infinite security markets

被引:19
作者
Aliprantis, CD
Brown, DJ
Polyrakis, IA
Werner, J
机构
[1] Indiana Univ Purdue Univ, Dept Math & Econ, Indianapolis, IN USA
[2] Cornell Univ, Dept Econ, Ithaca, NY 14853 USA
[3] CALTECH, Div Humanities & Social Sci, Pasadena, CA 91125 USA
[4] Yale Univ, Dept Econ, New Haven, CT 06520 USA
[5] Natl Tech Univ Athens, Dept Math, GR-15773 Athens, Greece
[6] Univ Minnesota, Dept Econ, Minneapolis, MN 55455 USA
[7] Cornell Univ, Ctr Analyt Econ, Ithaca, NY USA
关键词
security markets; portfolio dominance; equilibrium; Yudin basis;
D O I
10.1016/S0304-4068(97)00038-4
中图分类号
F [经济];
学科分类号
02 ;
摘要
The most natural way of ordering portfolios is by comparing their payoffs. A portfolio with payoff higher than the payoff of another portfolio is greater in the sense of portfolio dominance than that other portfolio. Portfolio dominance is a lattice order if the supremum and the infimum of any two portfolios are well-defined. We study security markets with infinitely many securities and arbitrary finite portfolio holdings. If portfolio dominance order is a lattice order and has a Yudin basis, then optimal portfolio allocations and equilibria in security markets do exist. (C) 1998 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:347 / 366
页数:20
相关论文
共 29 条
[1]  
Abramovich Y.A., 1994, P R IRISH ACAD, V94A, P237
[2]  
Aliprantis C.D., 1978, Locally Solid Riesz Spaces, V76
[3]  
Aliprantis C. D., 1985, POSITIVE OPERATORS
[4]  
Aliprantis CD, 1990, Existence and Optimality of Competitive Equilibria, DOI DOI 10.1007/978-3-642-61521-4
[5]  
ALIPRANTIS CD, 1996, IN PRESS ATT SEM MAT
[6]  
ALIPRANTIS CD, 1996, 1126 YAL U COWL FDN
[7]  
ALIPRANTIS CD, 1909, IN PRESS J MATH EC, V28
[8]  
[Anonymous], 1994, STUDIES EC THEORY
[9]  
[Anonymous], 1996, PROBLEMS EQUILIBRIUM
[10]   ARBITRAGE AND EXISTENCE OF EQUILIBRIUM IN INFINITE ASSET MARKETS [J].
BROWN, DJ ;
WERNER, J .
REVIEW OF ECONOMIC STUDIES, 1995, 62 (01) :101-114