Well-posedness for the Navier-Stokes equations

被引:606
作者
Koch, H [1 ]
Tataru, D
机构
[1] Univ Heidelberg, Inst Angew Math, D-6900 Heidelberg, Germany
[2] Northwestern Univ, Dept Math, Chicago, IL 60611 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/aima.2000.1937
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:22 / 35
页数:14
相关论文
共 17 条
[1]   GLOBAL-SOLUTIONS OF 2-DIMENSIONAL NAVIER-STOKES AND EULER EQUATIONS [J].
BENARTZI, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 128 (04) :329-358
[2]   GLOBAL-SOLUTIONS OF 2-DIMENSIONAL NAVIER-STOKES AND EULER EQUATIONS - REMARKS [J].
BREZIS, H .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 128 (04) :359-360
[3]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[4]  
Cannone M, 1997, REV MAT IBEROAM, V13, P515
[5]   NAVIER-STOKES FLOW IN R3 WITH MEASURES AS INITIAL VORTICITY AND MORREY SPACES [J].
GIGA, Y ;
MIYAKAWA, T .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1989, 14 (05) :577-618
[6]   TWO-DIMENSIONAL NAVIER-STOKES FLOW WITH MEASURES AS INITIAL VORTICITY [J].
GIGA, Y ;
MIYAKAWA, T ;
OSADA, H .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1988, 104 (03) :223-250
[7]  
Iftimie D, 1999, REV MAT IBEROAM, V15, P1
[8]   COMMUTATOR ESTIMATES AND THE EULER AND NAVIER-STOKES EQUATIONS [J].
KATO, T ;
PONCE, G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :891-907
[10]  
Lin FH, 1998, COMMUN PUR APPL MATH, V51, P241, DOI 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO