Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins

被引:576
作者
Shirts, MR [1 ]
Pitera, JW
Swope, WC
Pande, VS
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] IBM Corp, Almaden Res Ctr, San Jose, CA 95120 USA
关键词
D O I
10.1063/1.1587119
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Quantitative free energy computation involves both using a model that is sufficiently faithful to the experimental system under study (accuracy) and establishing statistically meaningful measures of the uncertainties resulting from finite sampling (precision). We use large-scale distributed computing to access sufficient computational resources to extensively sample molecular systems and thus reduce statistical uncertainty of measured free energies. In order to examine the accuracy of a range of common models used for protein simulation, we calculate the free energy of hydration of 15 amino acid side chain analogs derived from recent versions of the OPLS-AA, CHARMM, and AMBER parameter sets in TIP3P water using thermodynamic integration. We achieve a high degree of statistical precision in our simulations, obtaining uncertainties for the free energy of hydration of 0.02-0.05 kcal/mol, which are in general an order of magnitude smaller than those found in other studies. Notably, this level of precision is comparable to that obtained in experimental hydration free energy measurements of the same molecules. Root mean square differences from experiment over the set of molecules examined using AMBER-, CHARMM-, and OPLS-AA-derived parameters were 1.35 kcal/mol, 1.31 kcal/mol, and 0.85 kcal/mol, respectively. Under the simulation conditions used, these force fields tend to uniformly underestimate solubility of all the side chain analogs. The relative free energies of hydration between amino acid side chain analogs were closer to experiment but still exhibited significant deviations. Although extensive computational resources may be needed for large numbers of molecules, sufficient computational resources to calculate precise free energy calculations for small molecules are accessible to most researchers. (C) 2003 American Institute of Physics.
引用
收藏
页码:5740 / 5761
页数:22
相关论文
共 99 条
[1]   THERMODYNAMICS OF SOLUTE TRANSFER FROM WATER TO HEXADECANE [J].
ABRAHAM, MH ;
WHITING, GS ;
FUCHS, R ;
CHAMBERS, EJ .
JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2, 1990, (02) :291-300
[2]  
Allen M. P., 1987, COMPUTER SIMULATIONS, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
[3]   MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE [J].
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2384-2393
[5]  
[Anonymous], 1996, MOL MODELLING PRINCI
[6]   COMPUTER-SIMULATION STUDY OF THE MEAN FORCES BETWEEN FERROUS AND FERRIC IONS IN WATER [J].
BADER, JS ;
CHANDLER, D .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (15) :6423-6427
[7]   Determination of equilibrium properties of biomolecular systems using multidimensional adaptive umbrella sampling [J].
Bartels, C ;
Schaefer, M ;
Karplus, M .
JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (17) :8048-8067
[8]   Accurate ab initio quantum chemical determination of the relative energetics of peptide conformations and assessment of empirical force fields [J].
Beachy, MD ;
Chasman, D ;
Murphy, RB ;
Halgren, TA ;
Friesner, RA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (25) :5908-5920
[9]   SOLVATION THERMODYNAMICS OF NONIONIC SOLUTES [J].
BENNAIM, A ;
MARCUS, Y .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (04) :2016-2027
[10]  
BERENDSEN HJC, 1991, PROTEINS : STRUCTURE, DYNAMICS AND DESIGN, P384