Poly(n-isopropylacrylamide)-based hydrogel coatings on magnetite nanoparticles via atom transfer radical polymerization

被引:75
作者
Frimpong, Reynolds A. [1 ]
Hilt, J. Zach [1 ]
机构
[1] Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40506 USA
关键词
D O I
10.1088/0957-4484/19/17/175101
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Core magnetite (Fe3O4) nanoparticles have been functionalized with a model intelligent hydrogel system based on the temperature responsive polymer poly(n-isopropyl acrylamide) (PNIPAAm) to obtain magnetically responsive core-shell nanocomposites. Fe3O4 nanoparticles were obtained from a one-pot co-precipitation method which provided either oleic acid (hydrophobic) or citric acid (hydrophilic) coated nanoparticles. Subsequent ligand exchange of these coatings with various bromine alkyl halides and a bromo silane provided initiating sites for functionalization with NIPAAm using atom transfer radical polymerization (ATRP). The bromine alkyl halides that were used were 2-bromo-2-methyl propionic acid (BMPA) and 2-bromopropionyl bromide (BPB). The bromo silane that was used was 3-bromopropyl trimethoxysilane (BPTS). The intelligent polymeric shell consists of NIPAAm crosslinked with poly(ethylene glycol) 400 dimethacrylate (PEG400DMA). Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM) were used to confirm the presence of the polymeric shell. Dynamic light scattering (DLS) was used to characterize the nanocomposites for particle size changes with temperature. Their magnetic and temperature responsiveness show great promise for further biomedical applications. This platform for functionalizing magnetic nanoparticles with intelligent hydrogels promises to impact a wide range of medical and biological applications of magnetic nanoparticles.
引用
收藏
页数:7
相关论文
共 38 条
[1]   Protein separations using colloidal magnetic nanoparticles [J].
Bucak, S ;
Jones, DA ;
Laibinis, PE ;
Hatton, TA .
BIOTECHNOLOGY PROGRESS, 2003, 19 (02) :477-484
[2]   Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible [J].
De Palma, Randy ;
Peeters, Sara ;
Van Bael, Margriet J. ;
Van den Rul, Heidi ;
Bonroy, Kristien ;
Laureyn, Wim ;
Mullens, Jules ;
Borghs, Gustaaf ;
Maes, Guido .
CHEMISTRY OF MATERIALS, 2007, 19 (07) :1821-1831
[3]   A novel approach for preparation of thermoresponsive polymer magnetic microspheres with core-shell structure [J].
Deng, YH ;
Yang, WL ;
Wang, CC ;
Fu, SK .
ADVANCED MATERIALS, 2003, 15 (20) :1729-+
[4]   Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia [J].
Fortin, Jean-Paul ;
Wilhelm, Claire ;
Servais, Jacques ;
Menager, Christine ;
Bacri, Jean-Claude ;
Gazeau, Florence .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (09) :2628-2635
[5]   Methods for the surface functionalization of γ-Fe2O3 nanoparticles with initiators for atom transfer radical polymerization and the formation of core-shell inorganic-polymer structures [J].
Gravano, SM ;
Dumas, R ;
Liu, K ;
Patten, TE .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2005, 43 (16) :3675-3688
[6]   Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications [J].
Gupta, AK ;
Gupta, M .
BIOMATERIALS, 2005, 26 (18) :3995-4021
[7]   Heating potential of iron oxides for therapeutic purposes in interventional radiology [J].
Hilger, I ;
Frühauf, K ;
Andrä, W ;
Hiergeist, R ;
Hergt, R ;
Kaiser, WA .
ACADEMIC RADIOLOGY, 2002, 9 (02) :198-202
[8]   Cellular response to magnetic nanoparticles "PEGylated" via surface-initiated atom transfer radical polymerization [J].
Hu, FX ;
Neoh, KG ;
Cen, L ;
Kang, ET .
BIOMACROMOLECULES, 2006, 7 (03) :809-816
[9]   Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process [J].
Hyeon, T ;
Lee, SS ;
Park, J ;
Chung, Y ;
Bin Na, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (51) :12798-12801
[10]   Iron oxide nanoparticles for sustained delivery of anticancer agents [J].
Jain, Tapan K. ;
Morales, Marco A. ;
Sahoo, Sanjeeb K. ;
Leslie-Pelecky, Diandra L. ;
Labhasetwar, Vinod .
MOLECULAR PHARMACEUTICS, 2005, 2 (03) :194-205