Human muscle gene expression following resistance exercise and blood flow restriction

被引:139
作者
Drummond, Micah J.
Fujita, Satoshi [2 ]
Takash, Abe [2 ]
Dreyer, Hans C.
Volpi, Elena
Rasmussen, Blake B. [1 ]
机构
[1] Univ Texas Galveston, Med Branch, Dept Phys Therapy, Div Rehabil Sci, Galveston, TX 77550 USA
[2] Univ Tokyo, Grad Sch Frontier, Dept Human & Engineered Environm Studies, Chiba, Japan
关键词
mRNA; HIF-1; alpha; REDD1; mTOR; ischemia-reperfusion;
D O I
10.1249/MSS.0b013e318160ff84
中图分类号
G8 [体育];
学科分类号
04 ; 0403 ;
摘要
Introduction: Blood flow restriction in combination with low-intensity resistance exercise (REFR) increases skeletal muscle size to a similar extent as compared with traditional high-intensity resistance exercise training. However, there are limited data describing the molecular adaptations that occur after REFR. Purpose: To determine whether hypoxia inducible factor-1 alpha (HIF-1 alpha) and REDD1 mRNA are expressed differently in REFR compared with low-intensity resistance exercise with no blood flow restriction (CONTROL). Secondly, to determine whether low-intensity resistance exercise is able to induce changes in mRNA expression of several anabolic and catabolic genes as typically seen with high-intensity resistance exercise. Methods: Six subjects were studied at baseline and 3 h after a bout of leg resistance exercise (20% 1RM) in REFR and CONTROL subjects. Each subject participated in both groups, with 3 wk separating each visit. Muscle biopsy samples were analyzed for mRNA expression, using qRT-PCR. Results: Our primary finding was that there were no differences between CONTROL and REFR for any of the selected genes at 3 h after exercise (P > 0.05). However, low-intensity resistance exercise increased HIF-1 alpha, p21, MyoD, and muscle RING finger 1 (MuRF1) mRNA expression and decreased REDD1 and myostatin mRNA expression in both groups (P < 0.05). Conclusion: Low-intensity resistance exercise can alter skeletal muscle mRNA expression of several genes associated with muscle growth and remodeling, such as REDD1, HIF-1 alpha, MyoD, MuRF1, and myostatin. Further, the results from REFR and CONTROL were similar, indicating that the changes in early postexercise gene expression were attributable to the low-intensity resistance exercise bout, and not blood flow restriction.
引用
收藏
页码:691 / 698
页数:8
相关论文
共 37 条
[1]   Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training [J].
Abe, T ;
Kearns, CF ;
Sato, Y .
JOURNAL OF APPLIED PHYSIOLOGY, 2006, 100 (05) :1460-1466
[2]  
Abe T., 2005, Int J KAATSU Train Res, V1, P6, DOI [10.3806/ijktr.1.6, DOI 10.3806/IJKTR.1.6]
[3]   Physiological activation of hypoxia inducible factor-1 in human skeletal muscle [J].
Ameln, H ;
Gustafsson, T ;
Sundberg, CJ ;
Okamoto, K ;
Jansson, E ;
Poellinger, L ;
Makino, Y .
FASEB JOURNAL, 2005, 19 (06) :1009-+
[4]   A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets [J].
Arsham, AM ;
Howell, JJ ;
Simon, MC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (32) :29655-29660
[5]  
Bamman MM, 2001, AM J PHYSIOL-ENDOC M, V280, pE383
[6]   Time course of molecular responses of human skeletal muscle to acute bouts of resistance exercise [J].
Bickel, CS ;
Slade, J ;
Mahoney, E ;
Haddad, F ;
Dudley, GA ;
Adams, GR .
JOURNAL OF APPLIED PHYSIOLOGY, 2005, 98 (02) :482-488
[7]   Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex [J].
Brugarolas, J ;
Lei, K ;
Hurley, RL ;
Manning, BD ;
Reiling, JH ;
Hafen, E ;
Witter, LA ;
Ellisen, LW ;
Kaelin, WG .
GENES & DEVELOPMENT, 2004, 18 (23) :2893-2904
[8]   Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones [J].
Campos, GER ;
Luecke, TJ ;
Wendeln, HK ;
Toma, K ;
Hagerman, FC ;
Murray, TF ;
Ragg, KE ;
Ratamess, NA ;
Kraemer, WJ ;
Staron, RS .
EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, 2002, 88 (1-2) :50-60
[9]  
Carson J A, 1997, Exerc Sport Sci Rev, V25, P301
[10]   CHANGES IN HUMAN MUSCLE PROTEIN-SYNTHESIS AFTER RESISTANCE EXERCISE [J].
CHESLEY, A ;
MACDOUGALL, JD ;
TARNOPOLSKY, MA ;
ATKINSON, SA ;
SMITH, K .
JOURNAL OF APPLIED PHYSIOLOGY, 1992, 73 (04) :1383-1388