Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure

被引:1226
作者
Ataca, C. [1 ,2 ,3 ]
Sahin, H. [2 ,3 ]
Ciraci, S. [1 ,2 ,3 ]
机构
[1] Bilkent Univ, Dept Phys, TR-06800 Ankara, Turkey
[2] Bilkent Univ, Inst Mat Sci & Nanotechnol, TR-06800 Ankara, Turkey
[3] Bilkent Univ, UNAM Natl Nanotechnol Res Ctr, TR-06800 Ankara, Turkey
关键词
ELECTRONIC-STRUCTURE; CRYSTAL-STRUCTURE; SELECTIVE SYNTHESIS; LATTICE-DYNAMICS; FERMI-SURFACE; HIGH-PRESSURE; X-RAY; MOS2; FES2; STABILITY;
D O I
10.1021/jp212558p
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recent studies have revealed that single-layer transition-metal oxides and dichalcogenides (MX2) might offer properties superior to those of graphene. So far, only very few MX2 compounds have been synthesized as suspended single layers, and some of them have been exfoliated as thin sheets. Using first-principles structure optimization and phonon calculations based on density functional theory, we predict that, out of 88 different combinations of MX2 compounds, several of them can be stable in free-standing, single-layer honeycomb-like structures. These materials have two-dimensional hexagonal lattices and have top-view appearances as if they consisted of either honeycombs or centered honeycombs. However, their bonding is different from that of graphene; they can be viewed as a positively charged plane of transition-metal atoms sandwiched between two planes of negatively charged oxygen or chalcogen atoms. Electron correlation in transition-metal oxides was treated by including Coulomb repulsion through LDA + U calculations. Our analysis of stability was extended to include in-plane stiffness, as well as ab initio, finite-temperature molecular dynamics calculations. Some of these single-layer structures are direct- or indirect-band-gap semiconductors, only one compound is half-metal, and the rest are either ferromagnetic or nonmagnetic metals. Because of their surface polarity, band gap, high in-plane stiffness, and suitability for functionalization by adatoms or vacancies, these single-layer structures can be utilized in a wide range of technological applications, especially as nanoscale coatings for surfaces contributing crucial functionalities. In particular, the manifold WX2 heralds exceptional properties promising future nanoscale applications.
引用
收藏
页码:8983 / 8999
页数:17
相关论文
共 126 条
[1]   PHON: A program to calculate phonons using the small displacement method [J].
Alfe, Dario .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (12) :2622-2633
[2]   Computational Investigation of FeS2 Surfaces and Prediction of Effects of Sulfur Environment on Stabilities [J].
Alfonso, Dominic R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (19) :8971-8980
[3]  
[Anonymous], 2010, LANDOLT BORNSTEIN DA
[4]   Electronic structure, optical spectra, and x-ray magnetic circular dichroism in CoS2 [J].
Antonov, V. N. ;
Andryushchenko, O. V. ;
Shpak, A. P. ;
Yaresko, A. N. ;
Jepsen, O. .
PHYSICAL REVIEW B, 2008, 78 (09)
[5]   A Comparative Study of Lattice Dynamics of Three- and Two-Dimensional MoS2 [J].
Ataca, C. ;
Topsakal, M. ;
Akturk, E. ;
Ciraci, S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (33) :16354-16361
[6]   Functionalization of Single-Layer MoS2 Honeycomb Structures [J].
Ataca, C. ;
Ciraci, S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (27) :13303-13311
[7]   Mechanical and Electronic Properties of MoS2 Nanoribbons and Their Defects [J].
Ataca, C. ;
Sahin, H. ;
Akturk, E. ;
Ciraci, S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (10) :3934-3941
[8]   Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene [J].
Aufray, Bernard ;
Kara, Abdelkader ;
Vizzini, Sebastien ;
Oughaddou, Hamid ;
Leandri, Christel ;
Ealet, Benedicte ;
Le Lay, Guy .
APPLIED PHYSICS LETTERS, 2010, 96 (18)
[9]   Shape and thermodynamic stability of pyrite FeS2 nanocrystals and nanorods [J].
Barnard, A. S. ;
Russo, S. P. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (31) :11742-11746
[10]   Fermi-surface-induced lattice distortion in NbTe2 -: art. no. 195114 [J].
Battaglia, C ;
Cercellier, H ;
Clerc, F ;
Despont, L ;
Garnier, MG ;
Koitzsch, C ;
Aebi, P ;
Berger, H ;
Forró, L ;
Ambrosch-Draxl, C .
PHYSICAL REVIEW B, 2005, 72 (19)