Cirrus cloud occurrence as function of ambient relative humidity:: a comparison of observations obtained during the INCA experiment

被引:61
作者
Ström, J
Seifert, M
Kärcher, B
Ovarlez, J
Minikin, A
Gayet, JF
Krejci, R
Petzold, A
Auriol, F
Haag, W
Busen, R
Schumann, U
Hansson, HC
机构
[1] Univ Stockholm, Air Pollut Lab, ITM, S-10691 Stockholm, Sweden
[2] DLR, Inst Phys Atmosphare, Oberpfaffenhofen, Germany
[3] Ecole Polytech, CNRS, IPSL, LMD, F-91128 Palaiseau, France
[4] Univ Clermont Ferrand, LAMP, Aubiere, France
关键词
D O I
10.5194/acp-3-1807-2003
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Based on in-situ observations performed during the Interhemispheric differences in cirrus properties from anthropogenic emissions (INCA) experiment, we introduce and discuss the cloud presence fraction (CPF) defined as the ratio between the number of data points determined to represent cloud at a given ambient relative humidity over ice (RHI) divided by the total number of data points at that value of RHI. The CPFs are measured with four different cloud probes. Within similar ranges of detected particle sizes and concentrations, it is shown that different cloud probes yield results that are in good agreement with each other. The CPFs taken at Southern Hemisphere (SH) and Northern Hemisphere (NH) midlatitudes differ from each other. Above ice saturation, clouds occurred more frequently during the NH campaign. Local minima in the CPF as a function of RHI are interpreted as a systematic underestimation of cloud presence when cloud particles become invisible to cloud probes. Based on this interpretation, we find that clouds during the SH campaign formed preferentially at RHIs between 140 and 155%, whereas clouds in the NH campaign formed at RHIs somewhat below 130%. The data show that interstitial aerosol and ice particles coexist down to RHIs of 70 - 90%, demonstrating that the ability to distinguish between different particle types in cirrus conditions depends on the sensors used to probe the aerosol/cirrus system. Observed distributions of cloud water content differ only slightly between the NH and SH campaigns and seem to be only weakly, if at all, affected by the freezing aerosols.
引用
收藏
页码:1807 / 1816
页数:10
相关论文
共 31 条
[1]  
AMANATIDIS GT, 2002, EUROPEAN RES STRATOS, P257
[2]  
Auriol F, 2001, J ATMOS SCI, V58, P3376, DOI 10.1175/1520-0469(2001)058<3376:ISOOCS>2.0.CO
[3]  
2
[4]   INTERPRETATION OF MEASUREMENTS MADE BY THE FORWARD SCATTERING SPECTROMETER PROBE (FSSP-300) DURING THE AIRBORNE ARCTIC STRATOSPHERIC EXPEDITION [J].
BAUMGARDNER, D ;
DYE, JE ;
GANDRUD, BW ;
KNOLLENBERG, RG .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1992, 97 (D8) :8035-8046
[5]   Application of the T-matrix method to the measurement of aspherical (ellipsoidal) particles with forward scattering optical particle counters [J].
Borrmann, S ;
Luo, BP ;
Mishchenko, M .
JOURNAL OF AEROSOL SCIENCE, 2000, 31 (07) :789-799
[6]   Air traffic may increase cirrus cloudiness [J].
Boucher, O .
NATURE, 1999, 397 (6714) :30-31
[7]   SOLUTE EFFECTS ON THE EVAPORATION OF ICE PARTICLES [J].
CHEN, JP ;
CRUTZEN, PJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1994, 99 (D9) :18847-18859
[8]  
DeMott P. J., 2002, CIRRUS, P102
[9]  
GAYET JF, 1993, J ATMOS OCEAN TECH, V10, P180, DOI 10.1175/1520-0426(1993)010<0180:ACOICM>2.0.CO
[10]  
2