Involutory and invertible fuzzy BCK-algebras

被引:18
作者
Jun, YB [1 ]
Xin, XL
机构
[1] Gyeongsang Natl Univ, Dept Math Educ, Chinju 660701, South Korea
[2] NW Univ Xian, Dept Math, Xian 710069, Peoples R China
关键词
fuzzy annihilator; involutory (resp invertible) fuzzy ideal; distributive lattice; Quasi-Boolean algebra;
D O I
10.1016/S0165-0114(98)00406-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The concept of a fuzzy annihilator in a commutative BCK-algebra will be introduced and then we investigate some basic properties. Using this notion, we define an involutory (resp, invertible) fuzzy ideal. We prove that (i) every bounded implicative BCK-algebra is an involutory fuzzy BCK-algebra, and (ii) every categorical commutative BCK-algebra is an invertible fuzzy BCK-algebra. Let X be an involutory and invertible fuzzy BCK-algebra and let FI(X) denote the set of all fuzzy ideals of X. We show that (iii) (FI(X), boolean OR, boolean AND) is a distributive lattice, and (iv) (FI(X), iota, boolean OR, boolean AND, *) is a quasi-Boolean algebra. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:463 / 469
页数:7
相关论文
共 11 条
[1]  
Aslam M., 1991, MATH JAPONICA, V36, P895
[2]   FUZZY GROUPS AND LEVEL SUBGROUPS [J].
DAS, PS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 84 (01) :264-269
[3]  
Iseki K., 1978, Mathematica Japonica, V23, P1
[4]  
Iseki K., 1976, MATH JPN, V21, P351
[5]  
Jun Y. B., 1993, MATH JAPON, V38, P67
[6]  
JUN Y. B., 1995, MATH JPN, V42, P333
[7]   FUZZY COMMUTATIVE IDEALS OF BCK-ALGEBRAS [J].
JUN, YB ;
ROH, EH .
FUZZY SETS AND SYSTEMS, 1994, 64 (03) :401-405
[8]   Fuzzy implicative ideals of BCK-algebras [J].
Meng, J ;
Jun, YB ;
Kim, HS .
FUZZY SETS AND SYSTEMS, 1997, 89 (02) :243-248
[9]  
Meng J., 1994, BCK ALGEBRAS
[10]  
Rasiowa H, 1974, ALGEBRAIC APPROACH N