Application of radial basis function and feedforward artificial neural networks to the Escherichia coli fermentation process

被引:43
作者
Warnes, MR [1 ]
Glassey, J
Montague, GA
Kara, B
机构
[1] Newcastle Univ, Dept Chem & Proc Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[2] Zeneca Pharmaceut, Macclesfield SK10 4TG, Cheshire, England
基金
英国生物技术与生命科学研究理事会;
关键词
radial basis function network; feedforward neural network; bioprocess monitoring; biomass estimation; recombinant process modeling;
D O I
10.1016/S0925-2312(98)00025-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Radial basis function and feedforward neural networks are considered for modelling of the recombinant Escherichia coli fermentation process. The models use industrial on-line data from the process as input variables in order to estimate the concentrations of biomass and recombinant protein, normally only available from off-line laboratory analysis, The models performances are compared by prediction error and graphical fit using results obtained from a common testing set of fermentation data. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:67 / 82
页数:16
相关论文
共 24 条
[1]  
BREMERMANN HJ, 1989, ALTERNATIVE BACK PRO
[2]   REPRESENTATIONS OF NON-LINEAR SYSTEMS - THE NARMAX MODEL [J].
CHEN, S ;
BILLINGS, SA .
INTERNATIONAL JOURNAL OF CONTROL, 1989, 49 (03) :1013-1032
[3]   Confidence interval prediction for neural network models [J].
Chryssolouris, G ;
Lee, M ;
Ramsey, A .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1996, 7 (01) :229-232
[4]   ENHANCED SUPERVISION OF RECOMBINANT ESCHERICHIA-COLI FERMENTATIONS VIA ARTIFICIAL NEURAL NETWORKS [J].
GLASSEY, J ;
MONTAGUE, GA ;
WARD, AC ;
KARA, BV .
PROCESS BIOCHEMISTRY, 1994, 29 (05) :387-398
[5]  
Hecht-Nielson R., 1990, NEUROCOMPUTING
[6]  
JALEL NA, 1992, P IFAC MODELLING CON, P415
[7]  
Karim M. N., 1992, Proceedings of the 1992 American Control Conference (IEEE Cat. No.92CH3072-6), P495
[8]  
Leonard J. A., 1991, IEEE Control Systems Magazine, V11, P31, DOI 10.1109/37.75576
[9]   USING RADIAL BASIS FUNCTIONS TO APPROXIMATE A FUNCTION AND ITS ERROR-BOUNDS [J].
LEONARD, JA ;
KRAMER, MA ;
UNGAR, LH .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1992, 3 (04) :624-626
[10]   A NEURAL NETWORK ARCHITECTURE THAT COMPUTES ITS OWN RELIABILITY [J].
LEONARD, JA ;
KRAMER, MA ;
UNGAR, LH .
COMPUTERS & CHEMICAL ENGINEERING, 1992, 16 (09) :819-835