Spectroscopically determined collagen Pyr/deH-DHLNL cross-link ratio and crystallinity indices differ markedly in recombinant congenic mice with divergent calculated bone tissue strength

被引:52
作者
Blank, RD
Baldini, TH
Kaufman, M
Bailey, S
Gupta, R
Yershov, Y
Boskey, AL
Coppersmith, SN
Demant, P
Paschalis, EP
机构
[1] Univ Wisconsin, Sch Med, Dept Med, Endocrinol Sect, Madison, WI 53792 USA
[2] William S Middleton Mem Vet Adm Med Ctr, Ctr Geriatr Res Educ & Clin, Madison, WI USA
[3] Hosp Special Surg, Div Res, New York, NY 10021 USA
[4] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
[5] Univ Virginia, Dept Phys, Charlottesville, VA 22901 USA
[6] Netherlands Canc Inst, Dept Mol Genet, Amsterdam, Netherlands
关键词
bone quality; collagen; crystallinity; FTIR; mouse;
D O I
10.1080/03008200390223918
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Whole bone strength can be partitioned into structural and material components. In three-point bending tests of 6-month-old female humeri from the HcB/Dem recombinant congenic series, strains HcB/8 and HcB/23 differed markedly in calculated failure stress but not ash percentage. Fourier transform infrared spectroscopic imaging was used to determine whether differences in the ratio of pyridinoline (pyr; nonreducible) to dehydrodihydroxynorleucine (de-DHLNL; reducible) collagen cross-links (XLR), mineral crystallinity, or spatial ordering could account for the strains' differing biomechanical performance. HcB/8 had significantly higher XLR and significantly higher crystallinity than HcB/23. XLR and crystallinity were highly and similarly correlated in both strains. There were no significant differences between the strains' one-dimensional spatial correlation functions, suggesting no difference in short-range order between them. The strong correlation between XLR and crystallinity reflects the interdependence of the protein and mineral elements of bone. The data illustrate the importance of material properties in addition to mineral quantity to bone tissue strength.
引用
收藏
页码:134 / 142
页数:9
相关论文
共 60 条
[1]   Genetic variations in bone density, histomorphometry, and strength in mice [J].
Akhter, MP ;
Iwaniec, UT ;
Covey, MA ;
Cullen, DM ;
Kimmel, DB ;
Recker, RR .
CALCIFIED TISSUE INTERNATIONAL, 2000, 67 (04) :337-344
[2]   Optimal methods for processing mineralized tissues for Fourier transform infrared microspectroscopy [J].
Aparicio, S ;
Doty, SB ;
Camacho, NP ;
Paschalis, EP ;
Spevak, L ;
Mendelsohn, R ;
Boskey, AL .
CALCIFIED TISSUE INTERNATIONAL, 2002, 70 (05) :422-429
[3]  
BAILEY DW, 1981, MOUSE BIOMEDICAL RES, V1, P223
[4]   The differing tempo of growth in bone size, mass, and density in girls is region-specific [J].
Bass, S ;
Delmas, PD ;
Pearce, G ;
Hendrich, E ;
Tabensky, A ;
Seeman, E .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (06) :795-804
[5]   SEX-DIFFERENCES IN GEOMETRY OF THE FEMORAL-NECK WITH AGING - A STRUCTURAL-ANALYSIS OF BONE-MINERAL DATA [J].
BECK, TJ ;
RUFF, CB ;
SCOTT, WW ;
PLATO, CC ;
TOBIN, JD ;
QUAN, CA .
CALCIFIED TISSUE INTERNATIONAL, 1992, 50 (01) :24-29
[6]   Structural adaptation to changing skeletal load in the progression toward hip fragility: The study of osteoporotic fractures [J].
Beck, TJ ;
Oreskovic, TL ;
Stone, KL ;
Ruff, CB ;
Ensrud, K ;
Nevitt, MC ;
Genant, HK ;
Cummings, SR .
JOURNAL OF BONE AND MINERAL RESEARCH, 2001, 16 (06) :1108-1119
[7]   AGE-RELATED-CHANGES IN FEMALE FEMORAL-NECK GEOMETRY - IMPLICATIONS FOR BONE STRENGTH [J].
BECK, TJ ;
RUFF, CB ;
BISSESSUR, K ;
HEANEY ;
RAISZ ;
REEVE .
CALCIFIED TISSUE INTERNATIONAL, 1993, 53 :S41-S46
[8]   Regional differences in cortical porosity in the fractured femoral neck [J].
Bell, KL ;
Loveridge, N ;
Power, J ;
Garrahan, N ;
Meggitt, BF ;
Reeve, J .
BONE, 1999, 24 (01) :57-64
[9]   Structure of the femoral neck in hip fracture: Cortical bone loss in the inferoanterior to superoposterior axis [J].
Bell, KL ;
Loveridge, N ;
Power, J ;
Garrahan, N ;
Stanton, M ;
Lunt, M ;
Meggitt, BF ;
Reeve, J .
JOURNAL OF BONE AND MINERAL RESEARCH, 1999, 14 (01) :111-119
[10]   Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women [J].
Boivin, GY ;
Chavassieux, PM ;
Santora, AC ;
Yates, J ;
Meunier, PJ .
BONE, 2000, 27 (05) :687-694