Presenting a new method for the solution of nonlinear problems

被引:35
作者
Amore, P [1 ]
Aranda, A [1 ]
机构
[1] Univ Colima, Fac Ciencias, Colima, Mexico
关键词
D O I
10.1016/j.physleta.2003.08.001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a method for the resolution of (oscillatory) nonlinear problems. It is based on the application of the linear delta expansion to the Lindstedt-Poincare method. By applying it to the Duffing equation, we show that our method substantially improves the approximation given by the simple Lindstedt-Poincare method. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:218 / 225
页数:8
相关论文
共 12 条
[1]  
AMORE P, UNPUB
[2]  
BENDER CM, 1989, J MATHS PHYS, V30
[3]   Applying the linear delta expansion to disordered systems [J].
Blencowe, MP ;
Korte, AP .
PHYSICAL REVIEW B, 1997, 56 (15) :9422-9430
[4]   NONPERTURBATIVE PHYSICS FROM INTERPOLATING ACTIONS [J].
DUNCAN, A ;
MOSHE, M .
PHYSICS LETTERS B, 1988, 215 (02) :352-358
[5]   Quantum dynamics of the slow rollover transition in the linear delta expansion [J].
Jones, HF ;
Parkin, P ;
Winder, D .
PHYSICAL REVIEW D, 2001, 63 (12)
[6]  
JONES HF, 1991, JOINT INT LEPT PHOT
[7]   Convergent resummed linear δ expansion in the critical O(N) (φi2)3d2 model -: art. no. 210403 [J].
Kneur, JL ;
Pinto, MB ;
Ramos, RO .
PHYSICAL REVIEW LETTERS, 2002, 89 (21)
[8]  
KNEUR JL, CONDMAT0207295
[9]   Optimized delta expansion for the Walecka model [J].
Krein, G ;
Menezes, DP ;
Pinto, MB .
PHYSICS LETTERS B, 1996, 370 (1-2) :5-11
[10]  
LINDSTEDT A, 1883, MEM AC IMPER ST PETE, V31