Multiple hormones act sequentially to mediate a susceptible tomato pathogen defense response

被引:114
作者
O'Donnell, PJ
Schmelz, E
Block, A
Miersch, O
Wasternack, C
Jones, JB
Klee, HJ [1 ]
机构
[1] Univ Florida, Dept Hort Sci, Gainesville, FL 32611 USA
[2] Univ Florida, Dept Plant Pathol, Gainesville, FL 32611 USA
[3] USDA ARS, Ctr Med Agr & Vet Entomol, Gainesville, FL 32608 USA
[4] Inst Plant Biochem, D-06018 Halle, Germany
关键词
D O I
10.1104/pp.103.030379
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Phytohormones regulate plant responses to a wide range of biotic and abiotic stresses. How a limited number of hormones differentially mediate individual stress responses is not understood. We have used one such response, the compatible interaction of tomato (Lycopersicon esculentum) and Xanthomonas campestris pv vesicatoria (Xcv), to examine the interactions of jasmonic acid (JA), ethylene, and salicylic acid (SA). The role of JA was assessed using an antisense allene oxide cyclase transgenic line and the def1 mutant to suppress Xcv-induced biosynthesis of jasmonates. Xcv growth was limited in these lines as was subsequent disease symptom development. No increase in JA was detected before the onset of terminal necrosis. The lack of a detectable increase in JA may indicate that an oxylipin other than JA regulates basal resistance and symptom proliferation. Alternatively, there may be an increase in sensitivity to JA or related compounds following infection. Hormone measurements showed that the oxylipin signal must precede subsequent increases in ethylene and SA accumulation. Tomato thus actively regulates the Xcv-induced disease response via the sequential action of at least three hormones, promoting expansive cell death of its own tissue. This sequential action of jasmonate, ethylene, and SA in disease symptom development is different from the hormone interactions observed in many other plant-pathogen interactions.
引用
收藏
页码:1181 / 1189
页数:9
相关论文
共 47 条
[1]  
Abeles FB., 1992, ETHYLENE PLANT BIOL
[2]   DISEASE DEVELOPMENT IN ETHYLENE-INSENSITIVE ARABIDOPSIS-THALIANA INFECTED WITH VIRULENT AND AVIRULENT PSEUDOMONAS AND XANTHOMONAS PATHOGENS [J].
BENT, AF ;
INNES, RW ;
ECKER, JR ;
STASKAWICZ, BJ .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1992, 5 (05) :372-378
[3]   THE OCTADECANOIC PATHWAY - SIGNAL MOLECULES FOR THE REGULATION OF SECONDARY PATHWAYS [J].
BLECHERT, S ;
BRODSCHELM, W ;
HOLDER, S ;
KAMMERER, L ;
KUTCHAN, TM ;
MUELLER, MJ ;
XIA, ZQ ;
ZENK, MH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (10) :4099-4105
[4]   Impact of phyto-oxylipins in plant defense [J].
Blée, E .
TRENDS IN PLANT SCIENCE, 2002, 7 (07) :315-321
[5]   RESISTANCE IN TOMATO TO XANTHOMONAS-CAMPESTRIS PV VESICATORIA IS DETERMINED BY ALLELES OF THE PEPPER-SPECIFIC AVIRULENCE GENE AVRBS3 [J].
BONAS, U ;
CONRADSSTRAUCH, J ;
BALBO, I .
MOLECULAR AND GENERAL GENETICS, 1993, 238 (1-2) :261-269
[6]   Reduced expression of the tomato ethylene receptor gene LeETR4 enhances the hypersensitive response to Xanthomonas campestris pv. vesicatoria [J].
Ciardi, JA ;
Tieman, DM ;
Jones, JB ;
Klee, HJ .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2001, 14 (04) :487-495
[7]   A CENTRAL ROLE OF SALICYLIC-ACID IN PLANT-DISEASE RESISTANCE [J].
DELANEY, TP ;
UKNES, S ;
VERNOOIJ, B ;
FRIEDRICH, L ;
WEYMANN, K ;
NEGROTTO, D ;
GAFFNEY, T ;
GUTRELLA, M ;
KESSMANN, H ;
WARD, E ;
RYALS, J .
SCIENCE, 1994, 266 (5188) :1247-1250
[8]   Three unique mutants of Arabidopsis identify eds loci required for limiting growth of a biotrophic fungal pathogen [J].
Dewdney, J ;
Reuber, TL ;
Wildermuth, MC ;
Devoto, A ;
Cui, JP ;
Stutius, LM ;
Drummond, EP ;
Ausubel, FM .
PLANT JOURNAL, 2000, 24 (02) :205-218
[9]   SA, JA, ethylene, and disease resistance in plants [J].
Dong, XN .
CURRENT OPINION IN PLANT BIOLOGY, 1998, 1 (04) :316-323
[10]   Interplay of signaling pathways in plant disease resistance [J].
Feys, BJ ;
Parker, JE .
TRENDS IN GENETICS, 2000, 16 (10) :449-455