Computer simulations of 3-d Lorentzian quantum gravity

被引:13
作者
Ambjorn, J
Jurkiewicz, J
Loll, R
机构
[1] Niels Bohr Inst, DK-2100 Copenhagen O, Denmark
[2] Jagiellonian Univ, Inst Phys, PL-30059 Krakow, Poland
[3] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany
关键词
D O I
10.1016/S0920-5632(01)00878-7
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate the phase diagram of non-perturbative three-dimensional Lorentzian quantum gravity with the help of Monte Carlo simulations. The system has a first-order phase transition at a critical value k(0)(e) of the bare inverse gravitational coupling constant k(0). For k(0) > k(0)(c) the system reduces to a product of uncorrelated Euclidean 2d gravity models and has no intrinsic interest as a model of 3d gravity. For k(0) < k(0)(e), extended three-dimensional geometries dominate the functional integral despite the fact that we perform a sum over geometries and no particular background is distinguished at the outset. Furthermore, all systems with k(0) < k(0)(c) have the same continuum limit. A different choice of k(0) corresponds merely to a redefinition of the overall length scale.
引用
收藏
页码:689 / 692
页数:4
相关论文
共 4 条
[1]   Nonperturbative Lorentzian path integral for gravity [J].
Ambjorn, J ;
Jurkiewicz, J ;
Loll, R .
PHYSICAL REVIEW LETTERS, 2000, 85 (05) :924-927
[2]   4-DIMENSIONAL SIMPLICIAL QUANTUM-GRAVITY [J].
AMBJORN, J ;
JURKIEWICZ, J .
PHYSICS LETTERS B, 1992, 278 (1-2) :42-50
[3]   Non-perturbative Lorentzian quantum gravity, causality and topology change [J].
Ambjorn, J ;
Loll, R .
NUCLEAR PHYSICS B, 1998, 536 (1-2) :407-434
[4]  
AMBJORN J, IN PRESS NONPERTURBA