Thermodynamically important contacts in folding of model proteins

被引:8
作者
Scala, A
Dokholyan, NV [1 ]
Buldyrev, SV
Stanley, HE
机构
[1] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[2] Boston Univ, Dept Phys, Boston, MA 02215 USA
[3] Harvard Univ, Dept Chem & Biol Chem, Cambridge, MA 02138 USA
[4] Udr Rome La Sapienza, INFM, I-00185 Rome, Italy
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 03期
关键词
D O I
10.1103/PhysRevE.63.032901
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a quantity, the entropic susceptibility, that measures the thermodynamic importance-for the folding transition-of the contacts between amino acids in model proteins. Using this quantity, we find that only one equilibrium run of a computer simulation of a model protein is sufficient to select a subset of contacts that give rise to the peak in the specific heat observed at the folding transition. To illustrate the method, we identify thermodynamically important contacts in a model 46-mer. We show that only about 50% of all contacts present in the protein native state are responsible for the sharp peak in the specific heat at the folding transition temperature, while the remaining 50% of contacts do not affect the specific heat.
引用
收藏
页数:4
相关论文
共 25 条
[1]   NON-INTERACTING LOCAL-STRUCTURE MODEL OF FOLDING AND UNFOLDING TRANSITION IN GLOBULAR-PROTEINS .2. APPLICATION TO TWO-DIMENSIONAL LATTICE PROTEINS [J].
ABE, H ;
GO, N .
BIOPOLYMERS, 1981, 20 (05) :1013-1031
[2]   IMPACT OF LOCAL AND NONLOCAL INTERACTIONS ON THERMODYNAMICS AND KINETICS OF PROTEIN-FOLDING [J].
ABKEVICH, VI ;
GUTIN, AM ;
SHAKHNOVICH, EI .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 252 (04) :460-471
[3]   STUDIES IN MOLECULAR DYNAMICS .1. GENERAL METHOD [J].
ALDER, BJ ;
WAINWRIGHT, TE .
JOURNAL OF CHEMICAL PHYSICS, 1959, 31 (02) :459-466
[4]  
Allen M.P., 1987, COMPUTER SIMULATION
[5]   PRINCIPLES THAT GOVERN FOLDING OF PROTEIN CHAINS [J].
ANFINSEN, CB .
SCIENCE, 1973, 181 (4096) :223-230
[6]  
[Anonymous], 2011, GIANT MOL HERE THERE
[7]   INTERMEDIATES AND BARRIER CROSSING IN A RANDOM ENERGY-MODEL (WITH APPLICATIONS TO PROTEIN FOLDING) [J].
BRYNGELSON, JD ;
WOLYNES, PG .
JOURNAL OF PHYSICAL CHEMISTRY, 1989, 93 (19) :6902-6915
[8]  
CECCONI F, UNPUB
[9]   DOMINANT FORCES IN PROTEIN FOLDING [J].
DILL, KA .
BIOCHEMISTRY, 1990, 29 (31) :7133-7155
[10]   Discrete molecular dynamics studies of the folding of a protein-like model [J].
Dokholyan, NV ;
Buldyrev, SV ;
Stanley, HE ;
Shakhnovich, EI .
FOLDING & DESIGN, 1998, 3 (06) :577-587