Update on fetal hemoglobin gene regulation in hemoglobinopathies

被引:82
作者
Bauer, Daniel E. [1 ,2 ]
Orkin, Stuart H. [1 ,2 ,3 ]
机构
[1] Childrens Hosp, Boston, MA 02115 USA
[2] Dana Farber Canc Inst, Boston, MA USA
[3] Howard Hughes Med Inst, Boston, MA 02115 USA
关键词
BCL11A; epigenetics; fetal hemoglobin; gamma-globin; KLF1; BETA-GLOBIN GENE; SICKLE-CELL-ANEMIA; KRUPPEL-LIKE FACTOR; GENOME-WIDE ASSOCIATION; HUMAN GAMMA-GLOBIN; TRANSGENIC MICE; DEFINITIVE ERYTHROPOIESIS; TRANSCRIPTION FACTOR; ERYTHROID-CELLS; PRIMITIVE ERYTHROPOIESIS;
D O I
10.1097/MOP.0b013e3283420fd0
中图分类号
R72 [儿科学];
学科分类号
100202 ;
摘要
Purpose of review The developmental switch from fetal to adult hemoglobin has long fascinated biologists and attracted hematologists given its importance for patients with hemoglobin disorders. New discoveries have reinvigorated the field of globin gene regulation. These results hold promise for improved treatment of the major hemoglobinopathies. Recent findings Both genome-wide association studies and traditional linkage studies have identified several genetic loci involved in silencing fetal hemoglobin. BCL11A is a potent silencer of fetal hemoglobin in both mouse and humans. It controls the beta-globin gene cluster in concert with other factors. KLF1, a vital erythroid transcription factor, activates BCL11A and assists in coordinating the switch from fetal to adult hemoglobin. A regulatory network of cell-intrinsic and cell-extrinsic factors maintains the epigenetic homeostasis of the beta-globin cluster and accounts for the precise lineage-specific and developmental stage-specific regulation of the globin genes. Summary With an improved understanding of pathways involved in the switch from fetal to adult hemoglobin, new targets have emerged for the treatment of the common hemoglobin disorders, sickle cell anemia and beta-thalassemia.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 91 条
[1]   RNAi therapeutics: Principles, prospects and challenges [J].
Aagaard, Lars ;
Rossi, John J. .
ADVANCED DRUG DELIVERY REVIEWS, 2007, 59 (2-3) :75-86
[2]   SCF induces γ-globin gene expression by regulating downstream transcription factor COUP-TFII [J].
Aerbajinai, Wulin ;
Zhu, Jianqiong ;
Kumkhaek, Chutima ;
Chin, Kyung ;
Rodgers, Griffin P. .
BLOOD, 2009, 114 (01) :187-194
[3]   Regulation of human fetal hemoglobin: new players, new complexities [J].
Bank, A .
BLOOD, 2006, 107 (02) :435-443
[4]   EKLF and KLF2 have compensatory roles in embryonic β-globin gene expression and primitive erythropoiesis [J].
Basu, Priyadarshi ;
Lung, Tina K. ;
Lemsaddek, Wafaa ;
Sargent, Thanh Giang ;
Williams, David C., Jr. ;
Basu, Mohua ;
Redmond, Latasha C. ;
Lingrel, Jerry B. ;
Haar, Jack L. ;
Lloyd, Joyce A. .
BLOOD, 2007, 110 (09) :3417-3425
[5]   HUMAN GAMMA-GLOBIN TO BETA-GLOBIN GENE SWITCHING IN TRANSGENIC MICE [J].
BEHRINGER, RR ;
RYAN, TM ;
PALMITER, RD ;
BRINSTER, RL ;
TOWNES, TM .
GENES & DEVELOPMENT, 1990, 4 (03) :380-389
[6]   A sustained and pancellular reversal of gamma-globin gene silencing in adult human erythroid precursor cells [J].
Bhanu, NV ;
Trice, TA ;
Lee, YT ;
Gantt, NM ;
Oneal, P ;
Schwartz, JD ;
Noel, P ;
Miller, JL .
BLOOD, 2005, 105 (01) :387-393
[7]  
BIANCHI E, 2010, BLOOD
[8]   Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin [J].
Borg, Joseph ;
Papadopoulos, Petros ;
Georgitsi, Marianthi ;
Gutierrez, Laura ;
Grech, Godfrey ;
Fanis, Pavlos ;
Phylactides, Marios ;
Verkerk, Annemieke J. M. H. ;
van der Spek, Peter J. ;
Scerri, Christian A. ;
Cassar, Wilhelmina ;
Galdies, Ruth ;
van IJcken, Wilfred ;
Ozgur, Zeliha ;
Gillemans, Nynke ;
Hou, Jun ;
Bugeja, Marisa ;
Grosveld, Frank G. ;
von Lindern, Marieke ;
Felice, Alex E. ;
Patrinos, George P. ;
Philipsen, Sjaak .
NATURE GENETICS, 2010, 42 (09) :801-U100
[9]   Ikaros and GATA-1 Combinatorial Effect Is Required for Silencing of Human γ-Globin Genes [J].
Bottardi, Stefania ;
Ross, Julie ;
Bourgoin, Vincent ;
Fotouhi-Ardakani, Nasser ;
Affar, El Bachir ;
Trudel, Marie ;
Milot, Eric .
MOLECULAR AND CELLULAR BIOLOGY, 2009, 29 (06) :1526-1537
[10]   Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease [J].
Bradner, James E. ;
Mak, Raymond ;
Tanguturi, Shyam K. ;
Mazitschek, Ralph ;
Haggarty, Stephen J. ;
Ross, Kenneth ;
Chang, Cindy Y. ;
Bosco, Jocelyn ;
West, Nathan ;
Morse, Elizabeth ;
Lin, Katherine ;
Shen, John Paul ;
Kwiatkowski, Nicholas P. ;
Gheldof, Nele ;
Dekker, Job ;
DeAngelo, Daniel J. ;
Carr, Steven A. ;
Schreiber, Stuart L. ;
Golub, Todd R. ;
Ebert, Benjamin L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (28) :12617-12622