The Kelvin-Helmholtz instability: Finite Larmor radius magnetohydrodynamics

被引:60
作者
Huba, JD
机构
[1] Plasma Physics Division, Naval Research Laboratory, Washington, DC
[2] Code 6790, Naval Research Laboratory, Washington
关键词
D O I
10.1029/96GL02767
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
A preliminary theoretical and computational study of the Kelvin-Helmholtz instability in an inhomogeneous plasma is presented using finite Larmor radius magnetohydrodynamic (FLR MI-ID) theory. We show that FLR effects (1) can increase or decrease the linear growth rate, (2) cause the nonlinear evolution to be asymmetric, and (3) allow plasma 'blobs' to detach from the boundary layer. The asymmetric growth and nonlinear evolution depend on the sign of B .Omega where B is the magnetic field and Omega = del x V is the vorticity. The simulation results are qualitatively consistent with the hybrid simulations of Thomas and Winske (1991, 1993) and Thomas (1995). These results suggest that FLR MHD can capture important physical processes on length scales approaching the ion Larmor radius.
引用
收藏
页码:2907 / 2910
页数:4
相关论文
共 22 条
[1]   THE THICKNESS OF THE MAGNETOPAUSE CURRENT LAYER - ISEE 1 AND 2 OBSERVATIONS [J].
BERCHEM, J ;
RUSSELL, CT .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1982, 87 (NA4) :2108-2114
[2]  
Braginskii S. I., 1965, REV PLASMA PHYS, V1, P205, DOI DOI 10.1088/0741-3335/47/10/005
[3]  
CHANCDRASEKHAR S, 1961, HYDRODYNAMIC HYDROMA
[4]   KINETIC-THEORY FOR ELECTROSTATIC-WAVES DUE TO TRANSVERSE VELOCITY SHEARS [J].
GANGULI, G ;
LEE, YC ;
PALMADESSO, PJ .
PHYSICS OF FLUIDS, 1988, 31 (04) :823-838
[5]   SELF-CONSISTENT GYROVISCOUS FLUID MODEL OF ROTATIONAL DISCONTINUITIES [J].
HAU, LN ;
SONNERUP, BUO .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1991, 96 (A9) :15767-15778
[6]   Finite Larmor radius magnetohydrodynamics of the Rayleigh-Taylor instability [J].
Huba, JD .
PHYSICS OF PLASMAS, 1996, 3 (07) :2523-2532
[7]   HALL DYNAMICS OF THE KELVIN-HELMHOLTZ INSTABILITY [J].
HUBA, JD .
PHYSICAL REVIEW LETTERS, 1994, 72 (13) :2033-2036
[8]  
LUHMANN JG, 1991, SPACE SCI REV, V55, P201, DOI 10.1007/BF00177138
[9]   FINITE GYRO-RADIUS CORRECTIONS TO HYDROMAGNETIC EQUATIONS FOR A VLASOV PLASMA [J].
MACMAHON, A .
PHYSICS OF FLUIDS, 1965, 8 (10) :1840-&