Phase critical point densities in planar isotropic random waves

被引:18
作者
Dennis, MR [1 ]
机构
[1] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 20期
关键词
D O I
10.1088/0305-4470/34/20/102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The densities of critical points of phase (extrema and saddles), which play an important role in the theory of phase singularities (wave dislocations) in two dimensions, are calculated in isotropic plane wave superpositions. Critical points and dislocations are put on an equal footing as zeros of the two-dimensional current (Poynting vector), and the results, depending only on the second and fourth moments of the wave spectrum (distribution of wavenumbers), are related to the corresponding dislocation density. Explicit results for several spectra are derived, discussed and related to previous results.
引用
收藏
页码:L297 / L303
页数:7
相关论文
共 20 条
[1]   Much ado about nothing: optical dislocation lines (phase singularities, zeros, vortices ...) [J].
Berry, M .
INTERNATIONAL CONFERENCE ON SINGULAR OPTICS, 1998, 3487 :1-5
[2]   DISRUPTION OF WAVEFRONTS - STATISTICS OF DISLOCATIONS IN INCOHERENT GAUSSIAN RANDOM WAVES [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1978, 11 (01) :27-37
[3]   Phase singularities in isotropic random waves [J].
Berry, MV ;
Dennis, MR .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (2001) :2059-2079
[4]  
Berry MV, 1998, J MOD OPTIC, V45, P1845, DOI 10.1080/09500349808231706
[5]   Phase singularities in isotropic random waves (vol 456, pg 2059, 2000) [J].
Berry, MV ;
Dennis, MR .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (2004) :3048-3048
[6]  
DENNIS MR, 2001, SPIE, V4403, P14
[7]   Critical point trajectory bundles in singular wave fields [J].
Freund, I ;
Kessler, DA .
OPTICS COMMUNICATIONS, 2001, 187 (1-3) :71-90
[8]   '1001' correlations in random wave fields [J].
Freund, I .
WAVES IN RANDOM MEDIA, 1998, 8 (01) :119-158
[9]   SADDLES, SINGULARITIES, AND EXTREMA IN RANDOM-PHASE FIELDS [J].
FREUND, I .
PHYSICAL REVIEW E, 1995, 52 (03) :2348-2360
[10]  
Goodman J. W., 2000, STAT OPTICS