Characterization of the enantioselective properties of the quinohemoprotein alcohol dehydrogenase of Acetobacter pasteurianus LMG 1635.: 1.: Different enantiomeric ratios of whole cells and purified enzyme in the kinetic resolution of racemic glycidol

被引:13
作者
Machado, SS [1 ]
Wandel, U [1 ]
Jongejan, JA [1 ]
Straathof, AJJ [1 ]
Duine, JA [1 ]
机构
[1] Delft Univ Technol, Dept Microbiol & Enzymol, Kluyver Inst Biotechnol, NL-2628 BC Delft, Netherlands
关键词
Acetobacter pasteurianus; quinohemoprotein alcohol dehydrogenase; oxidation; enantioselectivity; kinetic resolution;
D O I
10.1271/bbb.63.10
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Resting cells of Acetobacter pasteurianus LMG 1635 (ATCC 12874) show appreciable enantioselectivity (E=16-18) in the oxidative kinetic resolution of racemic 2,3-epoxy-1-propanol, glycidol. Distinctly lower values (E=7-9) are observed for the ferricyanide-coupled oxidation of glycidol by the isolated quinohemoprotein alcohol dehydrogenase, QH-ADH, which is responsible for the enantiospecific oxidation step in whole cells. The accuracy of E-values from conversion experiments could be verified using complementary methods for the measurement of enantiomeric ratios. Effects of pH, detergent, the use of artificial electron accepters, and the presence of intermediate aldehydes, could be accounted for. Measurements of E-values at successive stages of the purification showed that the drop in enantioselectivity correlates with the separation of QH-ADH from the cytoplasmic membrane. It is argued that the native arrangement of QH-ADH in the membrane-associated complex favors the higher E-values. The consequences of these findings for the use of whole cells versus purified enzymes in biocatalytic kinetic resolutions of chiral alcohols are discussed.
引用
收藏
页码:10 / 20
页数:11
相关论文
共 52 条
[1]   PURIFICATION AND PROPERTIES OF PARTICULATE ALCOHOL-DEHYDROGENASE FROM ACETOBACTER-ACETI [J].
ADACHI, O ;
MIYAGAWA, E ;
SHINAGAWA, E ;
MATSUSHITA, K ;
AMEYAMA, M .
AGRICULTURAL AND BIOLOGICAL CHEMISTRY, 1978, 42 (12) :2331-2340
[2]  
AMEYAMA M, 1982, METHOD ENZYMOL, V89, P451
[3]   THE STRUCTURE AND FUNCTION OF METHANOL DEHYDROGENASE AND RELATED QUINOPROTEINS CONTAINING PYRROLO-QUINOLINE QUINONE [J].
ANTHONY, C ;
GHOSH, M ;
BLAKE, CCF .
BIOCHEMICAL JOURNAL, 1994, 304 :665-674
[4]  
Anthony C, 1997, CURR SCI INDIA, V72, P716
[5]   THE STRUCTURE OF BACTERIAL QUINOPROTEIN DEHYDROGENASES [J].
ANTHONY, C .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY, 1992, 24 (01) :29-39
[6]  
Asai T., 1968, ACETIC ACID BACTERIA
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]   QUANTITATIVE-ANALYSES OF BIOCHEMICAL KINETIC RESOLUTION OF ENANTIOMERS .2. ENZYME-CATALYZED ESTERIFICATIONS IN WATER ORGANIC-SOLVENT BIPHASIC SYSTEMS [J].
CHEN, CS ;
WU, SH ;
GIRDAUKAS, G ;
SIH, CJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1987, 109 (09) :2812-2817
[9]   QUANTITATIVE-ANALYSES OF BIOCHEMICAL KINETIC RESOLUTIONS OF ENANTIOMERS [J].
CHEN, CS ;
FUJIMOTO, Y ;
GIRDAUKAS, G ;
SIH, CJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1982, 104 (25) :7294-7299
[10]  
De LEY J., 1958, ANTONIE VAN LEEUWENHOEK JOUR MICROBIOL AND SEROL, V24, P281