Glutamate receptor dynamics in dendritic microdomains

被引:288
作者
Newpher, Thomas M. [1 ]
Ehlers, Michael D. [1 ,2 ]
机构
[1] Duke Univ, Med Ctr, Dept Neurobiol, Durham, NC 27710 USA
[2] Duke Univ, Med Ctr, Howard Hughes Med Inst, Durham, NC 27710 USA
关键词
D O I
10.1016/j.neuron.2008.04.030
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Among diverse factors regulating excitatory synaptic transmission, the abundance of postsynaptic glutamate receptors figures prominently in molecular memory and learning-related synaptic plasticity. To allow for both long-term maintenance of synaptic transmission and acute changes in synaptic strength, the relative rates of glutamate receptor insertion and removal must be tightly regulated. Interactions with scaffolding proteins control the targeting and signaling properties of glutamate receptors within the postsynaptic membrane. In addition, extrasynaptic receptor populations control the equilibrium of receptor exchange at synapses and activate distinct signaling pathways involved in plasticity. Here, we review recent findings that have shaped our current understanding of receptor mobility between synaptic and extrasynaptic compartments at glutamatergic synapses, focusing on AMPA and NMDA receptors. We also examine the cooperative relationship between intracellular trafficking and surface diffusion of glutamate receptors that underlies the expression of learning-related synaptic plasticity.
引用
收藏
页码:472 / 497
页数:26
相关论文
共 304 条
[1]   Photoinactivation of native AMPA receptors reveals their real-time trafficking [J].
Adesnik, H ;
Nicoll, RA ;
England, PM .
NEURON, 2005, 48 (06) :977-985
[2]   Neurotransmitter receptor dynamics studied in vivo by reversible photo-unbinding of fluorescent ligands [J].
Akaaboune, M ;
Grady, RM ;
Turney, S ;
Sanes, JR ;
Lichtman, JW .
NEURON, 2002, 34 (06) :865-876
[3]   Rapid and reversible effects of activity on acetylcholine receptor density at the neuromuscular junction in vivo [J].
Akaaboune, M ;
Culican, SM ;
Turney, SG ;
Lichtman, JW .
SCIENCE, 1999, 286 (5439) :503-507
[4]   Postsynaptic scaffolds of excitatory and inhibitory synapses in hippocampal neurons: Maintenance of core components independent of actin filaments and microtubules [J].
Allison, DW ;
Chervin, AS ;
Gelfand, VI ;
Craig, AM .
JOURNAL OF NEUROSCIENCE, 2000, 20 (12) :4545-4554
[5]  
Allison DW, 1998, J NEUROSCI, V18, P2423
[6]   Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses [J].
Almeida, CG ;
Tampellini, D ;
Takahashi, RH ;
Greengard, P ;
Lin, MT ;
Snyder, EM ;
Gouras, GK .
NEUROBIOLOGY OF DISEASE, 2005, 20 (02) :187-198
[7]   NERVE-INDUCED AND SPONTANEOUS REDISTRIBUTION OF ACETYLCHOLINE RECEPTORS ON CULTURED MUSCLE-CELLS [J].
ANDERSON, MJ ;
COHEN, MW .
JOURNAL OF PHYSIOLOGY-LONDON, 1977, 268 (03) :757-773
[8]   Distance-dependent increase in AMPA receptor number in the dendrites of adult hippocampal CA1 pyramidal neurons [J].
Andrásfalvy, BK ;
Magee, JC .
JOURNAL OF NEUROSCIENCE, 2001, 21 (23) :9151-9159
[9]   Syndapin I is the phosphorylation-regulated dynamin I partner in synaptic vesicle endocytosis [J].
Anggono, Victor ;
Smillie, Karen J. ;
Graham, Mark E. ;
Valova, Valentina A. ;
Cousin, Michael A. ;
Robinson, Phillip J. .
NATURE NEUROSCIENCE, 2006, 9 (06) :752-760
[10]  
AOKI C, 1994, J NEUROSCI, V14, P5202