3D arrays of SERS substrate for ultrasensitive molecular detection

被引:50
作者
Tan, R. Z.
Agarwal, A.
Balasubramanian, N.
Kwong, D. L.
Jiang, Y.
Widjaja, E.
Garland, A.
机构
[1] Inst Microelectron, Bio Electron & Bio MEMS, Singapore 117685, Singapore
[2] Inst Chem Engn Sci, Singapore 627833, Singapore
关键词
SERS; molecular detection; ordered-nanostructures; CMOS;
D O I
10.1016/j.sna.2006.11.010
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Systematically arranged arrays of nanostructures were realized using CMOS compatible silicon technologies. The ordered arrays of nanostructures were formed using DUV photolithography, reactive ion etching and physical vapour deposition of silver. By varying the lithography dosage, arrays having different distance of closest a proach between adjacent nanostructures are created. The nanostructures also have sharp edges to bring about a further enhancement to the local electromagnetic field. In comparison with other methods of preparing SERS substrate, our method provides advantages of high uniformity and high sample throughput. The Raman spectrum of Rhodarnine 6G (R6G) molecules is characterized on our C C, substrates. The substrates with the smaller distance between adjacent nanostructures show the greater enhancement. R6G with concentration up to 1 mu M was detected using SERS substrates fabricated. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:36 / 41
页数:6
相关论文
共 15 条
[1]   Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss [J].
Dick, LA ;
McFarland, AD ;
Haynes, CL ;
Van Duyne, RP .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (04) :853-860
[2]   Adaptive silver films for detection of antibody-antigen binding [J].
Drachev, VP ;
Nashine, VC ;
Thoreson, MD ;
Ben-Amotz, D ;
Davisson, VJ ;
Shalaev, VM .
LANGMUIR, 2005, 21 (18) :8368-8373
[3]  
FITZGERALD S, 2005, BIOFORUM EUROPE, V4, P56
[4]   Collective theory for surface enhanced Raman scattering [J].
GarciaVidal, FJ ;
Pendry, JB .
PHYSICAL REVIEW LETTERS, 1996, 77 (06) :1163-1166
[5]   Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays [J].
Haynes, CL ;
McFarland, AD ;
Zhao, LL ;
Van Duyne, RP ;
Schatz, GC ;
Gunnarsson, L ;
Prikulis, J ;
Kasemo, B ;
Kall, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (30) :7337-7342
[6]   Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics [J].
Haynes, CL ;
Van Duyne, RP .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (24) :5599-5611
[7]   Surface enhanced Raman gene probe for HIV detection [J].
Isola, NR ;
Stokes, DL ;
Vo-Dinh, T .
ANALYTICAL CHEMISTRY, 1998, 70 (07) :1352-1356
[8]   Surface-enhanced Raman spectra of calf thymus DNA adsorbed on concentrated silver colloid [J].
Ke, WH ;
Zhou, DF ;
Wu, JZ ;
Ji, K .
APPLIED SPECTROSCOPY, 2005, 59 (04) :418-423
[9]   Single molecule detection using surface-enhanced Raman scattering (SERS) [J].
Kneipp, K ;
Wang, Y ;
Kneipp, H ;
Perelman, LT ;
Itzkan, I ;
Dasari, R ;
Feld, MS .
PHYSICAL REVIEW LETTERS, 1997, 78 (09) :1667-1670
[10]   Surface-enhanced Raman Spectroscopy in single living cells using gold nanoparticles [J].
Kneipp, K ;
Haka, AS ;
Kneipp, H ;
Badizadegan, K ;
Yoshizawa, N ;
Boone, C ;
Shafer-Peltier, KE ;
Motz, JT ;
Dasari, RR ;
Feld, MS .
APPLIED SPECTROSCOPY, 2002, 56 (02) :150-154