Linear and neural models for classifying breast masses

被引:39
作者
Fogel, DB
Wasson, EC
Boughton, EM
Porto, VW
Angeline, PJ
机构
[1] Nat Select Inc, La Jolla, CA 92037 USA
[2] Maui Mem Hosp, Wailuku, HI 96793 USA
[3] Hawaii Ind Lab Inc, Wailuku, HI 96793 USA
关键词
artificial neural networks (ANN's); breast cancer; computer-assisted diagnosis; evolutionary programming; linear discriminant; ROC analysis;
D O I
10.1109/42.712139
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Computational methods can be used to provide an initial screening or a second opinion in medical settings and may improve the sensitivity and specificity of diagnoses. In the current study, linear discriminant models and artificial neural networks are trained to detect breast cancer in suspicious masses using radiographic features and patient age. Results on 139 suspicious breast masses (79 malignant, 60 benign, biopsy proven) indicate that a significant probability of detecting malignancies can be achieved at the risk of a small percentage of false positives. Receiver operating characteristic (ROC) analysis favors the use of linear models, however, a new measure related to the area under the ROC curve (A(Z)) suggests a possible benefit from hybridizing linear and nonlinear classifiers.
引用
收藏
页码:485 / 488
页数:4
相关论文
共 13 条
[1]  
[Anonymous], 1994, NEURAL NETWORKS
[2]   BREAST-CANCER - PREDICTION WITH ARTIFICIAL NEURAL-NETWORK-BASED ON BI-RADS STANDARDIZED LEXICON [J].
BAKER, JA ;
KORNGUTH, PJ ;
LO, JY ;
WILLIFORD, ME ;
FLOYD, CE .
RADIOLOGY, 1995, 196 (03) :817-822
[3]   CANCER STATISTICS, 1993 [J].
BORING, CC ;
SQUIRES, TS ;
TONG, T .
CA-A CANCER JOURNAL FOR CLINICIANS, 1993, 43 (01) :7-26
[4]   INTEROBSERVER AND INTRAOBSERVER VARIABILITY OF MAMMOGRAM INTERPRETATION - A FIELD-STUDY [J].
CICCONE, G ;
VINEIS, P ;
FRIGERIO, A ;
SEGNAN, N .
EUROPEAN JOURNAL OF CANCER, 1992, 28A (6-7) :1054-1058
[5]   VARIABILITY IN RADIOLOGISTS INTERPRETATIONS OF MAMMOGRAMS [J].
ELMORE, JG ;
WELLS, CK ;
LEE, CH ;
HOWARD, DH ;
FEINSTEIN, AR .
NEW ENGLAND JOURNAL OF MEDICINE, 1994, 331 (22) :1493-1499
[6]  
FLOYD CE, 1994, CANCER, V74, P2944, DOI 10.1002/1097-0142(19941201)74:11<2944::AID-CNCR2820741109>3.0.CO
[7]  
2-F
[8]  
Fogel D.B., 1995, EVOLUTIONARY COMPUTA
[9]   A step toward computer-assisted mammography using evolutionary programming and neural networks [J].
Fogel, DB ;
Wasson, EC ;
Boughton, EM ;
Porto, VW .
CANCER LETTERS, 1997, 119 (01) :93-97
[10]  
Giger M, 1996, RADIOL CLIN N AM, V34, P565