Vortex-state oscillations in soft magnetic cylindrical dots

被引:112
作者
Guslienko, KY
Scholz, W
Chantrell, RW
Novosad, V
机构
[1] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[2] Seagate Res, Pittsburgh, PA 15222 USA
来源
PHYSICAL REVIEW B | 2005年 / 71卷 / 14期
关键词
D O I
10.1103/PhysRevB.71.144407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We have studied magnetic vortex oscillations in soft submicron cylindrical dots with variable thickness and diameter by an analytical approach and micromagnetic simulations. We have considered two kinds of modes of the vortex magnetization oscillations: (1) low-frequency translation mode, corresponding to the movement of the vortex as a whole near its equilibrium position and (2) high-frequency vortex modes, which correspond to radially symmetric oscillations of the vortex magnetization, mainly outside the vortex core. The vortex translational eigenmode was calculated numerically in frequency and time domains for different dot aspect ratios. To describe the discrete set of vortex high-frequency modes we applied the linearized equation of motion of dynamic magnetization over the vortex ground state. We considered only radially symmetric magnetization oscillations modes. The eigenfrequencies of both kinds of the excitation modes are determined by magnetostatic interactions. They are proportional to the thickness/diameter ratio and lie in the GHz range for typical dot sizes.
引用
收藏
页数:8
相关论文
共 36 条
[1]   Imaging precessional motion of the magnetization vector [J].
Acremann, Y ;
Back, CH ;
Buess, M ;
Portmann, O ;
Vaterlaus, A ;
Pescia, D ;
Melchior, H .
SCIENCE, 2000, 290 (5491) :492-495
[2]   MAGNETIC VORTEX DYNAMICS USING THE OPTICAL COTTON-MOUTON EFFECT [J].
ARGYLE, BE ;
TERRENZIO, E ;
SLONCZEWSKI, JC .
PHYSICAL REVIEW LETTERS, 1984, 53 (02) :190-193
[3]   Fourier transform imaging of spin vortex eigenmodes -: art. no. 077207 [J].
Buess, M ;
Höllinger, R ;
Haug, T ;
Perzlmaier, K ;
Krey, U ;
Pescia, D ;
Scheinfein, MR ;
Weiss, D ;
Back, CH .
PHYSICAL REVIEW LETTERS, 2004, 93 (07) :077207-1
[4]   Langevin dynamic simulation of spin waves in a micromagnetic model [J].
Chubykalo, O ;
Hannay, JD ;
Wongsam, M ;
Chantrell, RW ;
Gonzalez, JM .
PHYSICAL REVIEW B, 2002, 65 (18) :1844281-18442810
[5]  
Cohen S. D., 1996, Computers in Physics, V10, P138
[6]   Single-domain circular nanomagnets [J].
Cowburn, RP ;
Koltsov, DK ;
Adeyeye, AO ;
Welland, ME ;
Tricker, DM .
PHYSICAL REVIEW LETTERS, 1999, 83 (05) :1042-1045
[7]   Property variation with shape in magnetic nanoelements [J].
Cowburn, RP .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2000, 33 (01) :R1-R16
[8]   Nucleation and annihilation of magnetic vortices in submicron-scale Co dots [J].
Fernandez, A ;
Cerjan, CJ .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (03) :1395-1401
[9]   Micromagnetic modelling - the current state of the art [J].
Fidler, J ;
Schrefl, T .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2000, 33 (15) :R135-R156
[10]   HYBRID METHOD FOR COMPUTING DEMAGNETIZING FIELDS [J].
FREDKIN, DR ;
KOEHLER, TR .
IEEE TRANSACTIONS ON MAGNETICS, 1990, 26 (02) :415-417